Cargando…
Low False-Positives in an mLumin-Based Bimolecular Fluorescence Complementation System with a Bicistronic Expression Vector
The simplicity and sensitivity of the bimolecular fluorescence complementation (BiFC) assay make it a powerful tool to investigate protein-protein interactions (PPIs) in living cells. However, non-specific association of the fluorescent protein fragments in a BiFC system can complicate evaluation of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958255/ https://www.ncbi.nlm.nih.gov/pubmed/24556667 http://dx.doi.org/10.3390/s140203284 |
Sumario: | The simplicity and sensitivity of the bimolecular fluorescence complementation (BiFC) assay make it a powerful tool to investigate protein-protein interactions (PPIs) in living cells. However, non-specific association of the fluorescent protein fragments in a BiFC system can complicate evaluation of PPIs. Here, we introduced a bicistronic expression vector, pBudCE4.1, into an mLumin-based BiFC system, denoted as the BEVL-BiFC system. The BEVL-BiFC system achieved a 25-fold contrast in BiFC efficiency between positive (Fos/Jun) and negative (ΔFos/Jun) PPIs. The high BiFC efficiency was due to a low false-positive rate, where less than 2% of cells displayed BiFC in the negative control. K-Ras and its interactive proteins, Ras binding domain (RBD) of Raf-1 and Grb2 were used to confirm the accuracy of the BEVL-BiFC system. The results also provide direct evidence in individual cells that post-translational modification of K-Ras and its localization at the plasma membrane (PM) were not essential for the interaction of K-Ras and Raf-1, whereas the interaction of Grb2 and K-Ras did depend on the PM localization of K-Ras. Taken together, the BEVL-BiFC system was developed to reduce the false-positive phenomenon in BiFC assays, resulting in more robust and accurate measurement of PPIs in living cells. |
---|