Cargando…

The extracellular matrix, p53 and estrogen compete to regulate cell-surface Fas/Apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, Fas-ligand modifies estrogen control of cell-cycle proteins

BACKGROUND: Apoptosis is important for normal cerebral cortical development. We previously showed that the Fas suicide receptor was expressed within the developing cerebral cortex, and that in vitro Fas activation resulted in caspase-dependent death. Alterations in cell-surface Fas expression may si...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheema, Zulfiqar F, Santillano, Daniel R, Wade, Stephen B, Newman, Joseph M, Miranda, Rajesh C
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC395829/
https://www.ncbi.nlm.nih.gov/pubmed/15038834
http://dx.doi.org/10.1186/1471-2202-5-11
_version_ 1782121336564350976
author Cheema, Zulfiqar F
Santillano, Daniel R
Wade, Stephen B
Newman, Joseph M
Miranda, Rajesh C
author_facet Cheema, Zulfiqar F
Santillano, Daniel R
Wade, Stephen B
Newman, Joseph M
Miranda, Rajesh C
author_sort Cheema, Zulfiqar F
collection PubMed
description BACKGROUND: Apoptosis is important for normal cerebral cortical development. We previously showed that the Fas suicide receptor was expressed within the developing cerebral cortex, and that in vitro Fas activation resulted in caspase-dependent death. Alterations in cell-surface Fas expression may significantly influence cortical development. Therefore, in the following studies, we sought to identify developmentally relevant cell biological processes that regulate cell-surface Fas expression and reciprocal consequences of Fas receptor activation. RESULTS: Flow-cytometric analyses identified two distinct neural sub-populations that expressed Fas on their cell surface at high (Fas(Hi)) or moderate (Fas(Mod)) levels. The anti-apoptotic protein FLIP further delineated a subset of Fas-expressing cells with potential apoptosis-resistance. Fas(Mod )precursors were mainly in G0, while Fas(Hi )precursors were largely apoptotic. However, birth-date analysis indicated that neuroblasts express the highest levels of cell-surface Fas at the end of S-phase, or after their final round of mitosis, suggesting that Fas expression is induced at cell cycle checkpoints or during interkinetic nuclear movements. Fas(Hi )expression was associated with loss of cell-matrix adhesion and anoikis. Activation of the transcription factor p53 was associated with induction of Fas expression, while the gonadal hormone estrogen antagonistically suppressed cell-surface Fas expression. Estrogen also induced entry into S-phase and decreased the number of Fas-expressing neuroblasts that were apoptotic. Concurrent exposure to estrogen and to soluble Fas-ligand (sFasL) suppressed p21/waf-1 and PCNA. In contrast, estrogen and sFasL, individually and together, induced cyclin-A expression, suggesting activation of compensatory survival mechanisms. CONCLUSIONS: Embryonic cortical neuronal precursors are intrinsically heterogeneous with respect to Fas suicide-sensitivity. Competing intrinsic (p53, cell cycle, FLIP expression), proximal (extra-cellular matrix) and extrinsic factors (gonadal hormones) collectively regulate Fas suicide-sensitivity either during neurogenesis, or possibly during neuronal migration, and may ultimately determine which neuroblasts successfully contribute neurons to the differentiating cortical plate.
format Text
id pubmed-395829
institution National Center for Biotechnology Information
language English
publishDate 2004
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-3958292004-04-25 The extracellular matrix, p53 and estrogen compete to regulate cell-surface Fas/Apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, Fas-ligand modifies estrogen control of cell-cycle proteins Cheema, Zulfiqar F Santillano, Daniel R Wade, Stephen B Newman, Joseph M Miranda, Rajesh C BMC Neurosci Research Article BACKGROUND: Apoptosis is important for normal cerebral cortical development. We previously showed that the Fas suicide receptor was expressed within the developing cerebral cortex, and that in vitro Fas activation resulted in caspase-dependent death. Alterations in cell-surface Fas expression may significantly influence cortical development. Therefore, in the following studies, we sought to identify developmentally relevant cell biological processes that regulate cell-surface Fas expression and reciprocal consequences of Fas receptor activation. RESULTS: Flow-cytometric analyses identified two distinct neural sub-populations that expressed Fas on their cell surface at high (Fas(Hi)) or moderate (Fas(Mod)) levels. The anti-apoptotic protein FLIP further delineated a subset of Fas-expressing cells with potential apoptosis-resistance. Fas(Mod )precursors were mainly in G0, while Fas(Hi )precursors were largely apoptotic. However, birth-date analysis indicated that neuroblasts express the highest levels of cell-surface Fas at the end of S-phase, or after their final round of mitosis, suggesting that Fas expression is induced at cell cycle checkpoints or during interkinetic nuclear movements. Fas(Hi )expression was associated with loss of cell-matrix adhesion and anoikis. Activation of the transcription factor p53 was associated with induction of Fas expression, while the gonadal hormone estrogen antagonistically suppressed cell-surface Fas expression. Estrogen also induced entry into S-phase and decreased the number of Fas-expressing neuroblasts that were apoptotic. Concurrent exposure to estrogen and to soluble Fas-ligand (sFasL) suppressed p21/waf-1 and PCNA. In contrast, estrogen and sFasL, individually and together, induced cyclin-A expression, suggesting activation of compensatory survival mechanisms. CONCLUSIONS: Embryonic cortical neuronal precursors are intrinsically heterogeneous with respect to Fas suicide-sensitivity. Competing intrinsic (p53, cell cycle, FLIP expression), proximal (extra-cellular matrix) and extrinsic factors (gonadal hormones) collectively regulate Fas suicide-sensitivity either during neurogenesis, or possibly during neuronal migration, and may ultimately determine which neuroblasts successfully contribute neurons to the differentiating cortical plate. BioMed Central 2004-03-23 /pmc/articles/PMC395829/ /pubmed/15038834 http://dx.doi.org/10.1186/1471-2202-5-11 Text en Copyright © 2004 Cheema et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
spellingShingle Research Article
Cheema, Zulfiqar F
Santillano, Daniel R
Wade, Stephen B
Newman, Joseph M
Miranda, Rajesh C
The extracellular matrix, p53 and estrogen compete to regulate cell-surface Fas/Apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, Fas-ligand modifies estrogen control of cell-cycle proteins
title The extracellular matrix, p53 and estrogen compete to regulate cell-surface Fas/Apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, Fas-ligand modifies estrogen control of cell-cycle proteins
title_full The extracellular matrix, p53 and estrogen compete to regulate cell-surface Fas/Apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, Fas-ligand modifies estrogen control of cell-cycle proteins
title_fullStr The extracellular matrix, p53 and estrogen compete to regulate cell-surface Fas/Apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, Fas-ligand modifies estrogen control of cell-cycle proteins
title_full_unstemmed The extracellular matrix, p53 and estrogen compete to regulate cell-surface Fas/Apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, Fas-ligand modifies estrogen control of cell-cycle proteins
title_short The extracellular matrix, p53 and estrogen compete to regulate cell-surface Fas/Apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, Fas-ligand modifies estrogen control of cell-cycle proteins
title_sort extracellular matrix, p53 and estrogen compete to regulate cell-surface fas/apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, fas-ligand modifies estrogen control of cell-cycle proteins
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC395829/
https://www.ncbi.nlm.nih.gov/pubmed/15038834
http://dx.doi.org/10.1186/1471-2202-5-11
work_keys_str_mv AT cheemazulfiqarf theextracellularmatrixp53andestrogencompetetoregulatecellsurfacefasapo1suicidereceptorexpressioninproliferatingembryoniccerebralcorticalprecursorsandreciprocallyfasligandmodifiesestrogencontrolofcellcycleproteins
AT santillanodanielr theextracellularmatrixp53andestrogencompetetoregulatecellsurfacefasapo1suicidereceptorexpressioninproliferatingembryoniccerebralcorticalprecursorsandreciprocallyfasligandmodifiesestrogencontrolofcellcycleproteins
AT wadestephenb theextracellularmatrixp53andestrogencompetetoregulatecellsurfacefasapo1suicidereceptorexpressioninproliferatingembryoniccerebralcorticalprecursorsandreciprocallyfasligandmodifiesestrogencontrolofcellcycleproteins
AT newmanjosephm theextracellularmatrixp53andestrogencompetetoregulatecellsurfacefasapo1suicidereceptorexpressioninproliferatingembryoniccerebralcorticalprecursorsandreciprocallyfasligandmodifiesestrogencontrolofcellcycleproteins
AT mirandarajeshc theextracellularmatrixp53andestrogencompetetoregulatecellsurfacefasapo1suicidereceptorexpressioninproliferatingembryoniccerebralcorticalprecursorsandreciprocallyfasligandmodifiesestrogencontrolofcellcycleproteins
AT cheemazulfiqarf extracellularmatrixp53andestrogencompetetoregulatecellsurfacefasapo1suicidereceptorexpressioninproliferatingembryoniccerebralcorticalprecursorsandreciprocallyfasligandmodifiesestrogencontrolofcellcycleproteins
AT santillanodanielr extracellularmatrixp53andestrogencompetetoregulatecellsurfacefasapo1suicidereceptorexpressioninproliferatingembryoniccerebralcorticalprecursorsandreciprocallyfasligandmodifiesestrogencontrolofcellcycleproteins
AT wadestephenb extracellularmatrixp53andestrogencompetetoregulatecellsurfacefasapo1suicidereceptorexpressioninproliferatingembryoniccerebralcorticalprecursorsandreciprocallyfasligandmodifiesestrogencontrolofcellcycleproteins
AT newmanjosephm extracellularmatrixp53andestrogencompetetoregulatecellsurfacefasapo1suicidereceptorexpressioninproliferatingembryoniccerebralcorticalprecursorsandreciprocallyfasligandmodifiesestrogencontrolofcellcycleproteins
AT mirandarajeshc extracellularmatrixp53andestrogencompetetoregulatecellsurfacefasapo1suicidereceptorexpressioninproliferatingembryoniccerebralcorticalprecursorsandreciprocallyfasligandmodifiesestrogencontrolofcellcycleproteins