Cargando…

Detecting and minimizing zinc contamination in physiological solutions

BACKGROUND: To explore the role of zinc (Zn) in cellular physiology it is important to be able to control and quantify the level of Zn contamination in experimental solutions. A technique that relies on a Zn-sensitive fluorimetric probe is introduced for measuring Zn concentrations as low as 100 pM....

Descripción completa

Detalles Bibliográficos
Autor principal: Kay, Alan R
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC395835/
https://www.ncbi.nlm.nih.gov/pubmed/15113426
http://dx.doi.org/10.1186/1472-6793-4-4
Descripción
Sumario:BACKGROUND: To explore the role of zinc (Zn) in cellular physiology it is important to be able to control and quantify the level of Zn contamination in experimental solutions. A technique that relies on a Zn-sensitive fluorimetric probe is introduced for measuring Zn concentrations as low as 100 pM. The method depends on the combination of the Zn-probe FluoZin-3 together with a slow Zn-chelator, Ca-EDTA, that reduces the background Zn levels and allows repeated measurements in the same solution. RESULTS: The method was used to determine which common labware items could leach Zn into solution. Contamination was predictably found to arise from stainless steel and glass. Perhaps less expectedly it was also introduced by methacrylate cuvettes, plastic tissue culture dishes and other plastic labware. The release of nickel from stainless steel electrodes was also imaged using the fluorescent probe Newport Green. CONCLUSION: Zn contamination may arise from rather unexpected sources; it is important that all aspects and components used in the course of an experiment be analyzed for the possibility of introducing contaminants.