Cargando…
The Impact of Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African Anopheline Mosquitoes: Systematic Review and Meta-Analysis
BACKGROUND: Pyrethroid insecticide-treated bed nets (ITNs) help contribute to reducing malaria deaths in Africa, but their efficacy is threatened by insecticide resistance in some malaria mosquito vectors. We therefore assessed the evidence that resistance is attenuating the effect of ITNs on entomo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958359/ https://www.ncbi.nlm.nih.gov/pubmed/24642791 http://dx.doi.org/10.1371/journal.pmed.1001619 |
_version_ | 1782307859536543744 |
---|---|
author | Strode, Clare Donegan, Sarah Garner, Paul Enayati, Ahmad Ali Hemingway, Janet |
author_facet | Strode, Clare Donegan, Sarah Garner, Paul Enayati, Ahmad Ali Hemingway, Janet |
author_sort | Strode, Clare |
collection | PubMed |
description | BACKGROUND: Pyrethroid insecticide-treated bed nets (ITNs) help contribute to reducing malaria deaths in Africa, but their efficacy is threatened by insecticide resistance in some malaria mosquito vectors. We therefore assessed the evidence that resistance is attenuating the effect of ITNs on entomological outcomes. METHODS AND FINDINGS: We included laboratory and field studies of African malaria vectors that measured resistance at the time of the study and used World Health Organization–recommended impregnation regimens. We reported mosquito mortality, blood feeding, induced exophily (premature exit of mosquitoes from the hut), deterrence, time to 50% or 95% knock-down, and percentage knock-down at 60 min. Publications were searched from 1 January 1980 to 31 December 2013 using MEDLINE, Cochrane Central Register of Controlled Trials, Science Citation Index Expanded, Social Sciences Citation Index, African Index Medicus, and CAB Abstracts. We stratified studies into three levels of insecticide resistance, and ITNs were compared with untreated bed nets (UTNs) using the risk difference (RD). Heterogeneity was explored visually and statistically. Included were 36 laboratory and 24 field studies, reported in 25 records. Studies tested and reported resistance inconsistently. Based on the meta-analytic results, the difference in mosquito mortality risk for ITNs compared to UTNs was lower in higher resistance categories. However, mortality risk was significantly higher for ITNs compared to UTNs regardless of resistance. For cone tests: low resistance, risk difference (RD) 0.86 (95% CI 0.72 to 1.01); moderate resistance, RD 0.71 (95% CI 0.53 to 0.88); high resistance, RD 0.56 (95% CI 0.17 to 0.95). For tunnel tests: low resistance, RD 0.74 (95% CI 0.61 to 0.87); moderate resistance, RD 0.50 (95% CI 0.40 to 0.60); high resistance, RD 0.39 (95% CI 0.24 to 0.54). For hut studies: low resistance, RD 0.56 (95% CI 0.43 to 0.68); moderate resistance, RD 0.39 (95% CI 0.16 to 0.61); high resistance, RD 0.35 (95% CI 0.27 to 0.43). However, with the exception of the moderate resistance category for tunnel tests, there was extremely high heterogeneity across studies in each resistance category (chi-squared test, p<0.00001, I (2) varied from 95% to 100%). CONCLUSIONS: This meta-analysis found that ITNs are more effective than UTNs regardless of resistance. There appears to be a relationship between resistance and the RD for mosquito mortality in laboratory and field studies. However, the substantive heterogeneity in the studies' results and design may mask the true relationship between resistance and the RD, and the results need to be interpreted with caution. Our analysis suggests the potential for cumulative meta-analysis in entomological trials, but further field research in this area will require specialists in the field to work together to improve the quality of trials, and to standardise designs, assessment, and reporting of both resistance and entomological outcomes. Please see later in the article for the Editors' Summary |
format | Online Article Text |
id | pubmed-3958359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39583592014-03-27 The Impact of Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African Anopheline Mosquitoes: Systematic Review and Meta-Analysis Strode, Clare Donegan, Sarah Garner, Paul Enayati, Ahmad Ali Hemingway, Janet PLoS Med Research Article BACKGROUND: Pyrethroid insecticide-treated bed nets (ITNs) help contribute to reducing malaria deaths in Africa, but their efficacy is threatened by insecticide resistance in some malaria mosquito vectors. We therefore assessed the evidence that resistance is attenuating the effect of ITNs on entomological outcomes. METHODS AND FINDINGS: We included laboratory and field studies of African malaria vectors that measured resistance at the time of the study and used World Health Organization–recommended impregnation regimens. We reported mosquito mortality, blood feeding, induced exophily (premature exit of mosquitoes from the hut), deterrence, time to 50% or 95% knock-down, and percentage knock-down at 60 min. Publications were searched from 1 January 1980 to 31 December 2013 using MEDLINE, Cochrane Central Register of Controlled Trials, Science Citation Index Expanded, Social Sciences Citation Index, African Index Medicus, and CAB Abstracts. We stratified studies into three levels of insecticide resistance, and ITNs were compared with untreated bed nets (UTNs) using the risk difference (RD). Heterogeneity was explored visually and statistically. Included were 36 laboratory and 24 field studies, reported in 25 records. Studies tested and reported resistance inconsistently. Based on the meta-analytic results, the difference in mosquito mortality risk for ITNs compared to UTNs was lower in higher resistance categories. However, mortality risk was significantly higher for ITNs compared to UTNs regardless of resistance. For cone tests: low resistance, risk difference (RD) 0.86 (95% CI 0.72 to 1.01); moderate resistance, RD 0.71 (95% CI 0.53 to 0.88); high resistance, RD 0.56 (95% CI 0.17 to 0.95). For tunnel tests: low resistance, RD 0.74 (95% CI 0.61 to 0.87); moderate resistance, RD 0.50 (95% CI 0.40 to 0.60); high resistance, RD 0.39 (95% CI 0.24 to 0.54). For hut studies: low resistance, RD 0.56 (95% CI 0.43 to 0.68); moderate resistance, RD 0.39 (95% CI 0.16 to 0.61); high resistance, RD 0.35 (95% CI 0.27 to 0.43). However, with the exception of the moderate resistance category for tunnel tests, there was extremely high heterogeneity across studies in each resistance category (chi-squared test, p<0.00001, I (2) varied from 95% to 100%). CONCLUSIONS: This meta-analysis found that ITNs are more effective than UTNs regardless of resistance. There appears to be a relationship between resistance and the RD for mosquito mortality in laboratory and field studies. However, the substantive heterogeneity in the studies' results and design may mask the true relationship between resistance and the RD, and the results need to be interpreted with caution. Our analysis suggests the potential for cumulative meta-analysis in entomological trials, but further field research in this area will require specialists in the field to work together to improve the quality of trials, and to standardise designs, assessment, and reporting of both resistance and entomological outcomes. Please see later in the article for the Editors' Summary Public Library of Science 2014-03-18 /pmc/articles/PMC3958359/ /pubmed/24642791 http://dx.doi.org/10.1371/journal.pmed.1001619 Text en © 2014 Strode et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Strode, Clare Donegan, Sarah Garner, Paul Enayati, Ahmad Ali Hemingway, Janet The Impact of Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African Anopheline Mosquitoes: Systematic Review and Meta-Analysis |
title | The Impact of Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African Anopheline Mosquitoes: Systematic Review and Meta-Analysis |
title_full | The Impact of Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African Anopheline Mosquitoes: Systematic Review and Meta-Analysis |
title_fullStr | The Impact of Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African Anopheline Mosquitoes: Systematic Review and Meta-Analysis |
title_full_unstemmed | The Impact of Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African Anopheline Mosquitoes: Systematic Review and Meta-Analysis |
title_short | The Impact of Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African Anopheline Mosquitoes: Systematic Review and Meta-Analysis |
title_sort | impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against african anopheline mosquitoes: systematic review and meta-analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958359/ https://www.ncbi.nlm.nih.gov/pubmed/24642791 http://dx.doi.org/10.1371/journal.pmed.1001619 |
work_keys_str_mv | AT strodeclare theimpactofpyrethroidresistanceontheefficacyofinsecticidetreatedbednetsagainstafricananophelinemosquitoessystematicreviewandmetaanalysis AT donegansarah theimpactofpyrethroidresistanceontheefficacyofinsecticidetreatedbednetsagainstafricananophelinemosquitoessystematicreviewandmetaanalysis AT garnerpaul theimpactofpyrethroidresistanceontheefficacyofinsecticidetreatedbednetsagainstafricananophelinemosquitoessystematicreviewandmetaanalysis AT enayatiahmadali theimpactofpyrethroidresistanceontheefficacyofinsecticidetreatedbednetsagainstafricananophelinemosquitoessystematicreviewandmetaanalysis AT hemingwayjanet theimpactofpyrethroidresistanceontheefficacyofinsecticidetreatedbednetsagainstafricananophelinemosquitoessystematicreviewandmetaanalysis AT strodeclare impactofpyrethroidresistanceontheefficacyofinsecticidetreatedbednetsagainstafricananophelinemosquitoessystematicreviewandmetaanalysis AT donegansarah impactofpyrethroidresistanceontheefficacyofinsecticidetreatedbednetsagainstafricananophelinemosquitoessystematicreviewandmetaanalysis AT garnerpaul impactofpyrethroidresistanceontheefficacyofinsecticidetreatedbednetsagainstafricananophelinemosquitoessystematicreviewandmetaanalysis AT enayatiahmadali impactofpyrethroidresistanceontheefficacyofinsecticidetreatedbednetsagainstafricananophelinemosquitoessystematicreviewandmetaanalysis AT hemingwayjanet impactofpyrethroidresistanceontheefficacyofinsecticidetreatedbednetsagainstafricananophelinemosquitoessystematicreviewandmetaanalysis |