Cargando…
Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target
Pituitary adenylate cyclase activating polypeptide (PACAP) is an important neurotrophic factor influencing differentiation of neuronal elements and exerting protecting role during traumatic injuries or inflammatory processes of the central nervous system. Although increasing evidence is available on...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958376/ https://www.ncbi.nlm.nih.gov/pubmed/24643018 http://dx.doi.org/10.1371/journal.pone.0091541 |
_version_ | 1782307863444586496 |
---|---|
author | Juhász, Tamás Matta, Csaba Katona, Éva Somogyi, Csilla Takács, Roland Gergely, Pál Csernoch, László Panyi, Gyorgy Tóth, Gábor Reglődi, Dóra Tamás, Andrea Zákány, Róza |
author_facet | Juhász, Tamás Matta, Csaba Katona, Éva Somogyi, Csilla Takács, Roland Gergely, Pál Csernoch, László Panyi, Gyorgy Tóth, Gábor Reglődi, Dóra Tamás, Andrea Zákány, Róza |
author_sort | Juhász, Tamás |
collection | PubMed |
description | Pituitary adenylate cyclase activating polypeptide (PACAP) is an important neurotrophic factor influencing differentiation of neuronal elements and exerting protecting role during traumatic injuries or inflammatory processes of the central nervous system. Although increasing evidence is available on its presence and protecting function in various peripheral tissues, little is known about the role of PACAP in formation of skeletal components. To this end, we aimed to map elements of PACAP signalling in developing cartilage under physiological conditions and during oxidative stress. mRNAs of PACAP and its receptors (PAC1,VPAC1, VPAC2) were detectable during differentiation of chicken limb bud-derived chondrogenic cells in micromass cell cultures. Expression of PAC1 protein showed a peak on days of final commitment of chondrogenic cells. Administration of either the PAC1 receptor agonist PACAP 1-38, or PACAP 6-38 that is generally used as a PAC1 antagonist, augmented cartilage formation, stimulated cell proliferation and enhanced PAC1 and Sox9 protein expression. Both variants of PACAP elevated the protein expression and activity of the Ca-calmodulin dependent Ser/Thr protein phosphatase calcineurin. Application of PACAPs failed to rescue cartilage formation when the activity of calcineurin was pharmacologically inhibited with cyclosporine A. Moreover, exogenous PACAPs prevented diminishing of cartilage formation and decrease of calcineurin activity during oxidative stress. As an unexpected phenomenon, PACAP 6-38 elicited similar effects to those of PACAP 1-38, although to a different extent. On the basis of the above results, we propose calcineurin as a downstream target of PACAP signalling in differentiating chondrocytes either in normal or pathophysiological conditions. Our observations imply the therapeutical perspective that PACAP can be applied as a natural agent that may have protecting effect during joint inflammation and/or may promote cartilage regeneration during degenerative diseases of articular cartilage. |
format | Online Article Text |
id | pubmed-3958376 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39583762014-03-24 Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target Juhász, Tamás Matta, Csaba Katona, Éva Somogyi, Csilla Takács, Roland Gergely, Pál Csernoch, László Panyi, Gyorgy Tóth, Gábor Reglődi, Dóra Tamás, Andrea Zákány, Róza PLoS One Research Article Pituitary adenylate cyclase activating polypeptide (PACAP) is an important neurotrophic factor influencing differentiation of neuronal elements and exerting protecting role during traumatic injuries or inflammatory processes of the central nervous system. Although increasing evidence is available on its presence and protecting function in various peripheral tissues, little is known about the role of PACAP in formation of skeletal components. To this end, we aimed to map elements of PACAP signalling in developing cartilage under physiological conditions and during oxidative stress. mRNAs of PACAP and its receptors (PAC1,VPAC1, VPAC2) were detectable during differentiation of chicken limb bud-derived chondrogenic cells in micromass cell cultures. Expression of PAC1 protein showed a peak on days of final commitment of chondrogenic cells. Administration of either the PAC1 receptor agonist PACAP 1-38, or PACAP 6-38 that is generally used as a PAC1 antagonist, augmented cartilage formation, stimulated cell proliferation and enhanced PAC1 and Sox9 protein expression. Both variants of PACAP elevated the protein expression and activity of the Ca-calmodulin dependent Ser/Thr protein phosphatase calcineurin. Application of PACAPs failed to rescue cartilage formation when the activity of calcineurin was pharmacologically inhibited with cyclosporine A. Moreover, exogenous PACAPs prevented diminishing of cartilage formation and decrease of calcineurin activity during oxidative stress. As an unexpected phenomenon, PACAP 6-38 elicited similar effects to those of PACAP 1-38, although to a different extent. On the basis of the above results, we propose calcineurin as a downstream target of PACAP signalling in differentiating chondrocytes either in normal or pathophysiological conditions. Our observations imply the therapeutical perspective that PACAP can be applied as a natural agent that may have protecting effect during joint inflammation and/or may promote cartilage regeneration during degenerative diseases of articular cartilage. Public Library of Science 2014-03-18 /pmc/articles/PMC3958376/ /pubmed/24643018 http://dx.doi.org/10.1371/journal.pone.0091541 Text en © 2014 Juhász et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Juhász, Tamás Matta, Csaba Katona, Éva Somogyi, Csilla Takács, Roland Gergely, Pál Csernoch, László Panyi, Gyorgy Tóth, Gábor Reglődi, Dóra Tamás, Andrea Zákány, Róza Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target |
title | Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target |
title_full | Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target |
title_fullStr | Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target |
title_full_unstemmed | Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target |
title_short | Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target |
title_sort | pituitary adenylate cyclase activating polypeptide (pacap) signalling exerts chondrogenesis promoting and protecting effects: implication of calcineurin as a downstream target |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958376/ https://www.ncbi.nlm.nih.gov/pubmed/24643018 http://dx.doi.org/10.1371/journal.pone.0091541 |
work_keys_str_mv | AT juhasztamas pituitaryadenylatecyclaseactivatingpolypeptidepacapsignallingexertschondrogenesispromotingandprotectingeffectsimplicationofcalcineurinasadownstreamtarget AT mattacsaba pituitaryadenylatecyclaseactivatingpolypeptidepacapsignallingexertschondrogenesispromotingandprotectingeffectsimplicationofcalcineurinasadownstreamtarget AT katonaeva pituitaryadenylatecyclaseactivatingpolypeptidepacapsignallingexertschondrogenesispromotingandprotectingeffectsimplicationofcalcineurinasadownstreamtarget AT somogyicsilla pituitaryadenylatecyclaseactivatingpolypeptidepacapsignallingexertschondrogenesispromotingandprotectingeffectsimplicationofcalcineurinasadownstreamtarget AT takacsroland pituitaryadenylatecyclaseactivatingpolypeptidepacapsignallingexertschondrogenesispromotingandprotectingeffectsimplicationofcalcineurinasadownstreamtarget AT gergelypal pituitaryadenylatecyclaseactivatingpolypeptidepacapsignallingexertschondrogenesispromotingandprotectingeffectsimplicationofcalcineurinasadownstreamtarget AT csernochlaszlo pituitaryadenylatecyclaseactivatingpolypeptidepacapsignallingexertschondrogenesispromotingandprotectingeffectsimplicationofcalcineurinasadownstreamtarget AT panyigyorgy pituitaryadenylatecyclaseactivatingpolypeptidepacapsignallingexertschondrogenesispromotingandprotectingeffectsimplicationofcalcineurinasadownstreamtarget AT tothgabor pituitaryadenylatecyclaseactivatingpolypeptidepacapsignallingexertschondrogenesispromotingandprotectingeffectsimplicationofcalcineurinasadownstreamtarget AT reglodidora pituitaryadenylatecyclaseactivatingpolypeptidepacapsignallingexertschondrogenesispromotingandprotectingeffectsimplicationofcalcineurinasadownstreamtarget AT tamasandrea pituitaryadenylatecyclaseactivatingpolypeptidepacapsignallingexertschondrogenesispromotingandprotectingeffectsimplicationofcalcineurinasadownstreamtarget AT zakanyroza pituitaryadenylatecyclaseactivatingpolypeptidepacapsignallingexertschondrogenesispromotingandprotectingeffectsimplicationofcalcineurinasadownstreamtarget |