Cargando…
Parameter and State Estimator for State Space Models
This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958805/ https://www.ncbi.nlm.nih.gov/pubmed/24723791 http://dx.doi.org/10.1155/2014/106505 |
_version_ | 1782307945573253120 |
---|---|
author | Ding, Ruifeng Zhuang, Linfan |
author_facet | Ding, Ruifeng Zhuang, Linfan |
author_sort | Ding, Ruifeng |
collection | PubMed |
description | This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective. |
format | Online Article Text |
id | pubmed-3958805 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-39588052014-04-10 Parameter and State Estimator for State Space Models Ding, Ruifeng Zhuang, Linfan ScientificWorldJournal Research Article This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective. Hindawi Publishing Corporation 2014-03-02 /pmc/articles/PMC3958805/ /pubmed/24723791 http://dx.doi.org/10.1155/2014/106505 Text en Copyright © 2014 R. Ding and L. Zhuang. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ding, Ruifeng Zhuang, Linfan Parameter and State Estimator for State Space Models |
title | Parameter and State Estimator for State Space Models |
title_full | Parameter and State Estimator for State Space Models |
title_fullStr | Parameter and State Estimator for State Space Models |
title_full_unstemmed | Parameter and State Estimator for State Space Models |
title_short | Parameter and State Estimator for State Space Models |
title_sort | parameter and state estimator for state space models |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958805/ https://www.ncbi.nlm.nih.gov/pubmed/24723791 http://dx.doi.org/10.1155/2014/106505 |
work_keys_str_mv | AT dingruifeng parameterandstateestimatorforstatespacemodels AT zhuanglinfan parameterandstateestimatorforstatespacemodels |