Cargando…

Parameter and State Estimator for State Space Models

This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Ruifeng, Zhuang, Linfan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958805/
https://www.ncbi.nlm.nih.gov/pubmed/24723791
http://dx.doi.org/10.1155/2014/106505
_version_ 1782307945573253120
author Ding, Ruifeng
Zhuang, Linfan
author_facet Ding, Ruifeng
Zhuang, Linfan
author_sort Ding, Ruifeng
collection PubMed
description This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.
format Online
Article
Text
id pubmed-3958805
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-39588052014-04-10 Parameter and State Estimator for State Space Models Ding, Ruifeng Zhuang, Linfan ScientificWorldJournal Research Article This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective. Hindawi Publishing Corporation 2014-03-02 /pmc/articles/PMC3958805/ /pubmed/24723791 http://dx.doi.org/10.1155/2014/106505 Text en Copyright © 2014 R. Ding and L. Zhuang. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Ding, Ruifeng
Zhuang, Linfan
Parameter and State Estimator for State Space Models
title Parameter and State Estimator for State Space Models
title_full Parameter and State Estimator for State Space Models
title_fullStr Parameter and State Estimator for State Space Models
title_full_unstemmed Parameter and State Estimator for State Space Models
title_short Parameter and State Estimator for State Space Models
title_sort parameter and state estimator for state space models
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958805/
https://www.ncbi.nlm.nih.gov/pubmed/24723791
http://dx.doi.org/10.1155/2014/106505
work_keys_str_mv AT dingruifeng parameterandstateestimatorforstatespacemodels
AT zhuanglinfan parameterandstateestimatorforstatespacemodels