Cargando…
Mass Spectrometry Analysis Coupled with de novo Sequencing Reveals Amino Acid Substitutions in Nucleocapsid Protein from Influenza A Virus
Amino acid substitutions in influenza A virus are the main reasons for both antigenic shift and virulence change, which result from non-synonymous mutations in the viral genome. Nucleocapsid protein (NP), one of the major structural proteins of influenza virus, is responsible for regulation of viral...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958862/ https://www.ncbi.nlm.nih.gov/pubmed/24521884 http://dx.doi.org/10.3390/ijms15022465 |
_version_ | 1782307958388948992 |
---|---|
author | Li, Zijian Sun, Wanchun Wu, Donglin Gao, Xiang Sun, Ningning Liu, Ning |
author_facet | Li, Zijian Sun, Wanchun Wu, Donglin Gao, Xiang Sun, Ningning Liu, Ning |
author_sort | Li, Zijian |
collection | PubMed |
description | Amino acid substitutions in influenza A virus are the main reasons for both antigenic shift and virulence change, which result from non-synonymous mutations in the viral genome. Nucleocapsid protein (NP), one of the major structural proteins of influenza virus, is responsible for regulation of viral RNA synthesis and replication. In this report we used LC-MS/MS to analyze tryptic digestion of nucleocapsid protein of influenza virus (A/Puerto Rico/8/1934 H1N1), which was isolated and purified by SDS poly-acrylamide gel electrophoresis. Thus, LC-MS/MS analyses, coupled with manual de novo sequencing, allowed the determination of three substituted amino acid residues R452K, T423A and N430T in two tryptic peptides. The obtained results provided experimental evidence that amino acid substitutions resulted from non-synonymous gene mutations could be directly characterized by mass spectrometry in proteins of RNA viruses such as influenza A virus. |
format | Online Article Text |
id | pubmed-3958862 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-39588622014-03-20 Mass Spectrometry Analysis Coupled with de novo Sequencing Reveals Amino Acid Substitutions in Nucleocapsid Protein from Influenza A Virus Li, Zijian Sun, Wanchun Wu, Donglin Gao, Xiang Sun, Ningning Liu, Ning Int J Mol Sci Communication Amino acid substitutions in influenza A virus are the main reasons for both antigenic shift and virulence change, which result from non-synonymous mutations in the viral genome. Nucleocapsid protein (NP), one of the major structural proteins of influenza virus, is responsible for regulation of viral RNA synthesis and replication. In this report we used LC-MS/MS to analyze tryptic digestion of nucleocapsid protein of influenza virus (A/Puerto Rico/8/1934 H1N1), which was isolated and purified by SDS poly-acrylamide gel electrophoresis. Thus, LC-MS/MS analyses, coupled with manual de novo sequencing, allowed the determination of three substituted amino acid residues R452K, T423A and N430T in two tryptic peptides. The obtained results provided experimental evidence that amino acid substitutions resulted from non-synonymous gene mutations could be directly characterized by mass spectrometry in proteins of RNA viruses such as influenza A virus. Molecular Diversity Preservation International (MDPI) 2014-02-11 /pmc/articles/PMC3958862/ /pubmed/24521884 http://dx.doi.org/10.3390/ijms15022465 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Communication Li, Zijian Sun, Wanchun Wu, Donglin Gao, Xiang Sun, Ningning Liu, Ning Mass Spectrometry Analysis Coupled with de novo Sequencing Reveals Amino Acid Substitutions in Nucleocapsid Protein from Influenza A Virus |
title | Mass Spectrometry Analysis Coupled with de novo Sequencing Reveals Amino Acid Substitutions in Nucleocapsid Protein from Influenza A Virus |
title_full | Mass Spectrometry Analysis Coupled with de novo Sequencing Reveals Amino Acid Substitutions in Nucleocapsid Protein from Influenza A Virus |
title_fullStr | Mass Spectrometry Analysis Coupled with de novo Sequencing Reveals Amino Acid Substitutions in Nucleocapsid Protein from Influenza A Virus |
title_full_unstemmed | Mass Spectrometry Analysis Coupled with de novo Sequencing Reveals Amino Acid Substitutions in Nucleocapsid Protein from Influenza A Virus |
title_short | Mass Spectrometry Analysis Coupled with de novo Sequencing Reveals Amino Acid Substitutions in Nucleocapsid Protein from Influenza A Virus |
title_sort | mass spectrometry analysis coupled with de novo sequencing reveals amino acid substitutions in nucleocapsid protein from influenza a virus |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958862/ https://www.ncbi.nlm.nih.gov/pubmed/24521884 http://dx.doi.org/10.3390/ijms15022465 |
work_keys_str_mv | AT lizijian massspectrometryanalysiscoupledwithdenovosequencingrevealsaminoacidsubstitutionsinnucleocapsidproteinfrominfluenzaavirus AT sunwanchun massspectrometryanalysiscoupledwithdenovosequencingrevealsaminoacidsubstitutionsinnucleocapsidproteinfrominfluenzaavirus AT wudonglin massspectrometryanalysiscoupledwithdenovosequencingrevealsaminoacidsubstitutionsinnucleocapsidproteinfrominfluenzaavirus AT gaoxiang massspectrometryanalysiscoupledwithdenovosequencingrevealsaminoacidsubstitutionsinnucleocapsidproteinfrominfluenzaavirus AT sunningning massspectrometryanalysiscoupledwithdenovosequencingrevealsaminoacidsubstitutionsinnucleocapsidproteinfrominfluenzaavirus AT liuning massspectrometryanalysiscoupledwithdenovosequencingrevealsaminoacidsubstitutionsinnucleocapsidproteinfrominfluenzaavirus |