Cargando…
Rule-based Method for Extent and Localization of Myocardial Infarction by Extracted Features of ECG Signals using Body Surface Potential Map Data
In this study, a method for determining the location and extent of myocardial infarction using Body Surface Potential Map data of PhysioNet challenge 2007 database is presented. This data is related to four patients with myocardial infarction. We used two patients as training set to determine rules...
Autores principales: | Safdarian, Naser, Dabanloo, Nader Jafarnia, Matini, Seyed Ali, Nasrabadi, Ali Motie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959003/ https://www.ncbi.nlm.nih.gov/pubmed/24672761 |
Ejemplares similares
-
Detection and Classification of Myocardial Infarction with Support Vector Machine Classifier Using Grasshopper Optimization Algorithm
por: Safdarian, Naser, et al.
Publicado: (2021) -
Detection and Classification of COVID-19 by Lungs Computed Tomography Scan Image Processing using Intelligence Algorithm
por: Safdarian, Naser, et al.
Publicado: (2021) -
Evaluating Morphological Features of Electrocardiogram Signals for Diagnosing of Myocardial Infarction Using Classification-Based Feature Selection
por: Mahmoudinejad, Seyed Ataddin, et al.
Publicado: (2021) -
Prediction of Biceps Muscle Electromyogram Signal Using a NARX Neural Network
por: Khodadadi, Vahid, et al.
Publicado: (2023) -
A dataset of a stimulated biceps muscle of electromyogram signal by using rossler chaotic equation
por: Khodadadi, Vahid, et al.
Publicado: (2023)