Cargando…
Selective serotonin reuptake inhibition modulates response inhibition in Parkinson’s disease
Impulsivity is common in Parkinson’s disease even in the absence of impulse control disorders. It is likely to be multifactorial, including a dopaminergic ‘overdose’ and structural changes in the frontostriatal circuits for motor control. In addition, we proposed that changes in serotonergic project...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959561/ https://www.ncbi.nlm.nih.gov/pubmed/24578545 http://dx.doi.org/10.1093/brain/awu032 |
_version_ | 1782308071049003008 |
---|---|
author | Ye, Zheng Altena, Ellemarije Nombela, Cristina Housden, Charlotte R. Maxwell, Helen Rittman, Timothy Huddleston, Chelan Rae, Charlotte L. Regenthal, Ralf Sahakian, Barbara J. Barker, Roger A. Robbins, Trevor W. Rowe, James B. |
author_facet | Ye, Zheng Altena, Ellemarije Nombela, Cristina Housden, Charlotte R. Maxwell, Helen Rittman, Timothy Huddleston, Chelan Rae, Charlotte L. Regenthal, Ralf Sahakian, Barbara J. Barker, Roger A. Robbins, Trevor W. Rowe, James B. |
author_sort | Ye, Zheng |
collection | PubMed |
description | Impulsivity is common in Parkinson’s disease even in the absence of impulse control disorders. It is likely to be multifactorial, including a dopaminergic ‘overdose’ and structural changes in the frontostriatal circuits for motor control. In addition, we proposed that changes in serotonergic projections to the forebrain also contribute to response inhibition in Parkinson’s disease, based on preclinical animal and human studies. We therefore examined whether the selective serotonin reuptake inhibitor citalopram improves response inhibition, in terms of both behaviour and the efficiency of underlying neural mechanisms. This multimodal magnetic resonance imaging study used a double-blind randomized placebo-controlled crossover design with an integrated Stop-Signal and NoGo paradigm. Twenty-one patients with idiopathic Parkinson’s disease (46–76 years old, 11 male, Hoehn and Yahr stage 1.5–3) received 30 mg citalopram or placebo in addition to their usual dopaminergic medication in two separate sessions. Twenty matched healthy control subjects (54–74 years old, 12 male) were tested without medication. The effects of disease and drug on behavioural performance and regional brain activity were analysed using general linear models. In addition, anatomical connectivity was examined using diffusion tensor imaging and tract-based spatial statistics. We confirmed that Parkinson’s disease caused impairment in response inhibition, with longer Stop-Signal Reaction Time and more NoGo errors under placebo compared with controls, without affecting Go reaction times. This was associated with less stop-specific activation in the right inferior frontal cortex, but no significant difference in NoGo-related activation. Although there was no beneficial main effect of citalopram, it reduced Stop-Signal Reaction Time and NoGo errors, and enhanced inferior frontal activation, in patients with relatively more severe disease (higher Unified Parkinson’s Disease Rating Scale motor score). The behavioural effect correlated with the citalopram-induced enhancement of prefrontal activation and the strength of preserved structural connectivity between the frontal and striatal regions. In conclusion, the behavioural effect of citalopram on response inhibition depends on individual differences in prefrontal cortical activation and frontostriatal connectivity. The correlation between disease severity and the effect of citalopram on response inhibition may be due to the progressive loss of forebrain serotonergic projections. These results contribute to a broader understanding of the critical roles of serotonin in regulating cognitive and behavioural control, as well as new strategies for patient stratification in clinical trials of serotonergic treatments in Parkinson’s disease. |
format | Online Article Text |
id | pubmed-3959561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-39595612014-03-19 Selective serotonin reuptake inhibition modulates response inhibition in Parkinson’s disease Ye, Zheng Altena, Ellemarije Nombela, Cristina Housden, Charlotte R. Maxwell, Helen Rittman, Timothy Huddleston, Chelan Rae, Charlotte L. Regenthal, Ralf Sahakian, Barbara J. Barker, Roger A. Robbins, Trevor W. Rowe, James B. Brain Original Articles Impulsivity is common in Parkinson’s disease even in the absence of impulse control disorders. It is likely to be multifactorial, including a dopaminergic ‘overdose’ and structural changes in the frontostriatal circuits for motor control. In addition, we proposed that changes in serotonergic projections to the forebrain also contribute to response inhibition in Parkinson’s disease, based on preclinical animal and human studies. We therefore examined whether the selective serotonin reuptake inhibitor citalopram improves response inhibition, in terms of both behaviour and the efficiency of underlying neural mechanisms. This multimodal magnetic resonance imaging study used a double-blind randomized placebo-controlled crossover design with an integrated Stop-Signal and NoGo paradigm. Twenty-one patients with idiopathic Parkinson’s disease (46–76 years old, 11 male, Hoehn and Yahr stage 1.5–3) received 30 mg citalopram or placebo in addition to their usual dopaminergic medication in two separate sessions. Twenty matched healthy control subjects (54–74 years old, 12 male) were tested without medication. The effects of disease and drug on behavioural performance and regional brain activity were analysed using general linear models. In addition, anatomical connectivity was examined using diffusion tensor imaging and tract-based spatial statistics. We confirmed that Parkinson’s disease caused impairment in response inhibition, with longer Stop-Signal Reaction Time and more NoGo errors under placebo compared with controls, without affecting Go reaction times. This was associated with less stop-specific activation in the right inferior frontal cortex, but no significant difference in NoGo-related activation. Although there was no beneficial main effect of citalopram, it reduced Stop-Signal Reaction Time and NoGo errors, and enhanced inferior frontal activation, in patients with relatively more severe disease (higher Unified Parkinson’s Disease Rating Scale motor score). The behavioural effect correlated with the citalopram-induced enhancement of prefrontal activation and the strength of preserved structural connectivity between the frontal and striatal regions. In conclusion, the behavioural effect of citalopram on response inhibition depends on individual differences in prefrontal cortical activation and frontostriatal connectivity. The correlation between disease severity and the effect of citalopram on response inhibition may be due to the progressive loss of forebrain serotonergic projections. These results contribute to a broader understanding of the critical roles of serotonin in regulating cognitive and behavioural control, as well as new strategies for patient stratification in clinical trials of serotonergic treatments in Parkinson’s disease. Oxford University Press 2014-04 2014-02-27 /pmc/articles/PMC3959561/ /pubmed/24578545 http://dx.doi.org/10.1093/brain/awu032 Text en © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Ye, Zheng Altena, Ellemarije Nombela, Cristina Housden, Charlotte R. Maxwell, Helen Rittman, Timothy Huddleston, Chelan Rae, Charlotte L. Regenthal, Ralf Sahakian, Barbara J. Barker, Roger A. Robbins, Trevor W. Rowe, James B. Selective serotonin reuptake inhibition modulates response inhibition in Parkinson’s disease |
title | Selective serotonin reuptake inhibition modulates response inhibition in Parkinson’s disease |
title_full | Selective serotonin reuptake inhibition modulates response inhibition in Parkinson’s disease |
title_fullStr | Selective serotonin reuptake inhibition modulates response inhibition in Parkinson’s disease |
title_full_unstemmed | Selective serotonin reuptake inhibition modulates response inhibition in Parkinson’s disease |
title_short | Selective serotonin reuptake inhibition modulates response inhibition in Parkinson’s disease |
title_sort | selective serotonin reuptake inhibition modulates response inhibition in parkinson’s disease |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959561/ https://www.ncbi.nlm.nih.gov/pubmed/24578545 http://dx.doi.org/10.1093/brain/awu032 |
work_keys_str_mv | AT yezheng selectiveserotoninreuptakeinhibitionmodulatesresponseinhibitioninparkinsonsdisease AT altenaellemarije selectiveserotoninreuptakeinhibitionmodulatesresponseinhibitioninparkinsonsdisease AT nombelacristina selectiveserotoninreuptakeinhibitionmodulatesresponseinhibitioninparkinsonsdisease AT housdencharlotter selectiveserotoninreuptakeinhibitionmodulatesresponseinhibitioninparkinsonsdisease AT maxwellhelen selectiveserotoninreuptakeinhibitionmodulatesresponseinhibitioninparkinsonsdisease AT rittmantimothy selectiveserotoninreuptakeinhibitionmodulatesresponseinhibitioninparkinsonsdisease AT huddlestonchelan selectiveserotoninreuptakeinhibitionmodulatesresponseinhibitioninparkinsonsdisease AT raecharlottel selectiveserotoninreuptakeinhibitionmodulatesresponseinhibitioninparkinsonsdisease AT regenthalralf selectiveserotoninreuptakeinhibitionmodulatesresponseinhibitioninparkinsonsdisease AT sahakianbarbaraj selectiveserotoninreuptakeinhibitionmodulatesresponseinhibitioninparkinsonsdisease AT barkerrogera selectiveserotoninreuptakeinhibitionmodulatesresponseinhibitioninparkinsonsdisease AT robbinstrevorw selectiveserotoninreuptakeinhibitionmodulatesresponseinhibitioninparkinsonsdisease AT rowejamesb selectiveserotoninreuptakeinhibitionmodulatesresponseinhibitioninparkinsonsdisease |