Cargando…
A Network of Epigenetic Regulators Guide Developmental Hematopoiesis In Vivo
The initiation of cellular programs is orchestrated by key transcription factors and chromatin regulators that activate or inhibit target gene expression. To generate a compendium of chromatin factors that establish the epigenetic code during developmental hematopoiesis, a large-scale reverse geneti...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959952/ https://www.ncbi.nlm.nih.gov/pubmed/24240475 http://dx.doi.org/10.1038/ncb2870 |
Sumario: | The initiation of cellular programs is orchestrated by key transcription factors and chromatin regulators that activate or inhibit target gene expression. To generate a compendium of chromatin factors that establish the epigenetic code during developmental hematopoiesis, a large-scale reverse genetic screen was conducted targeting orthologs of 425 human chromatin factors in zebrafish. A set of chromatin regulators was identified that target different stages of primitive and definitive blood formation, including factors not previously implicated in hematopoiesis. We identified 15 factors that regulate development of primitive erythroid progenitors and 29 factors that regulate development of definitive stem and progenitor cells. These chromatin factors are associated with SWI/SNF and ISWI chromatin remodeling, SET1 methyltransferase, CBP/P300/HBO1/NuA4 acetyltransferase, HDAC/NuRD deacetylase, and Polycomb repressive complexes. Our work provides a comprehensive view of how specific chromatin factors and their associated complexes play a major role in the establishment of hematopoietic cells in vivo. |
---|