Cargando…
HybridGO-Loc: Mining Hybrid Features on Gene Ontology for Predicting Subcellular Localization of Multi-Location Proteins
Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on...
Autores principales: | Wan, Shibiao, Mak, Man-Wai, Kung, Sun-Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960097/ https://www.ncbi.nlm.nih.gov/pubmed/24647341 http://dx.doi.org/10.1371/journal.pone.0089545 |
Ejemplares similares
-
mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines
por: Wan, Shibiao, et al.
Publicado: (2012) -
Sparse regressions for predicting and interpreting subcellular localization of multi-label proteins
por: Wan, Shibiao, et al.
Publicado: (2016) -
ProLoc-GO: Utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization
por: Huang, Wen-Lin, et al.
Publicado: (2008) -
MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction
por: Blum, Torsten, et al.
Publicado: (2009) -
The Gene Ontology (GO) Cellular Component Ontology: integration with SAO (Subcellular Anatomy Ontology) and other recent developments
por: Roncaglia, Paola, et al.
Publicado: (2013)