Cargando…
On a New Efficient Steffensen-Like Iterative Class by Applying a Suitable Self-Accelerator Parameter
It is attempted to present an efficient and free derivative class of Steffensen-like methods for solving nonlinear equations. To this end, firstly, we construct an optimal eighth-order three-step uniparameter without memory of iterative methods. Then the self-accelerator parameter is estimated using...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960562/ https://www.ncbi.nlm.nih.gov/pubmed/24729753 http://dx.doi.org/10.1155/2014/769758 |
Sumario: | It is attempted to present an efficient and free derivative class of Steffensen-like methods for solving nonlinear equations. To this end, firstly, we construct an optimal eighth-order three-step uniparameter without memory of iterative methods. Then the self-accelerator parameter is estimated using Newton's interpolation in such a way that it improves its convergence order from 8 to 12 without any extra function evaluation. Therefore, its efficiency index is increased from 8(1/4) to 12(1/4) which is the main feature of this class. To show applicability of the proposed methods, some numerical illustrations are presented. |
---|