Cargando…
Integrating Multiple Genomic Data to Predict Disease-Causing Nonsynonymous Single Nucleotide Variants in Exome Sequencing Studies
Exome sequencing has been widely used in detecting pathogenic nonsynonymous single nucleotide variants (SNVs) for human inherited diseases. However, traditional statistical genetics methods are ineffective in analyzing exome sequencing data, due to such facts as the large number of sequenced variant...
Autores principales: | Wu, Jiaxin, Li, Yanda, Jiang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961190/ https://www.ncbi.nlm.nih.gov/pubmed/24651380 http://dx.doi.org/10.1371/journal.pgen.1004237 |
Ejemplares similares
-
Prioritization Of Nonsynonymous Single Nucleotide Variants For Exome Sequencing Studies Via Integrative Learning On Multiple Genomic Data
por: Wu, Mengmeng, et al.
Publicado: (2015) -
Prediction of Deleterious Nonsynonymous Single-Nucleotide Polymorphism for Human Diseases
por: Wu, Jiaxin, et al.
Publicado: (2013) -
Global inference of disease-causing single nucleotide variants from exome sequencing data
por: Wu, Mengmeng, et al.
Publicado: (2016) -
Risk prediction and marker selection in nonsynonymous single nucleotide polymorphisms using whole genome sequencing data
por: Lee, Young-Sup, et al.
Publicado: (2020) -
Incorporating predicted functions of nonsynonymous variants into gene-based analysis of exome sequencing data: a comparative study
por: Wei, Peng, et al.
Publicado: (2011)