Cargando…

Inorganic Nanovehicle Targets Tumor in an Orthotopic Breast Cancer Model

The clinical efficacy of conventional chemotherapeutic agent, methotrexate (MTX), can be limited by its very short plasma half-life, the drug resistance, and the high dosage required for cancer cell suppression. In this study, a new drug delivery system is proposed to overcome such limitations. To r...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Goeun, Kwon, Oh-Joon, Oh, Yeonji, Yun, Chae-Ok, Choy, Jin-Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961742/
https://www.ncbi.nlm.nih.gov/pubmed/24651154
http://dx.doi.org/10.1038/srep04430
Descripción
Sumario:The clinical efficacy of conventional chemotherapeutic agent, methotrexate (MTX), can be limited by its very short plasma half-life, the drug resistance, and the high dosage required for cancer cell suppression. In this study, a new drug delivery system is proposed to overcome such limitations. To realize such a system, MTX was intercalated into layered double hydroxides (LDHs), inorganic drug delivery vehicle, through a co-precipitation route to produce a MTX-LDH nanohybrid with an average particle size of approximately 130 nm. Biodistribution studies in mice bearing orthotopic human breast tumors revealed that the tumor-to-liver ratio of MTX in the MTX-LDH-treated-group was 6-fold higher than that of MTX-treated-one after drug treatment for 2 hr. Moreover, MTX-LDH exhibited superior targeting effect resulting in high antitumor efficacy inducing a 74.3% reduction in tumor volume compared to MTX alone, and as a consequence, significant survival benefits. Annexin-V and propidium iodine dual staining and TUNEL analysis showed that MTX-LDH induced a greater degree of apoptosis than free MTX. Taken together, our data demonstrate that a new MTX-LDH nanohybrid exhibits a superior efficacy profile and improved distribution compared to MTX alone and has the potential to enhance therapeutic efficacy via inhibition of tumor proliferation and induction of apoptosis.