Cargando…

An Innovative Smartphone-Based Otorhinoendoscope and Its Application in Mobile Health and Teleotolaryngology

BACKGROUND: The traditional otorhinoendoscope is widely used in the diagnosis of a variety of ear and nose diseases, but only one doctor can use it at a time. It is also very difficult to share observations from one doctor with another doctor. With advances in electronic health technology, the exten...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Cheng-Jung, Wu, Sheng-Yu, Chen, Po-Chun, Lin, Yaoh-Shiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications Inc. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961810/
https://www.ncbi.nlm.nih.gov/pubmed/24590187
http://dx.doi.org/10.2196/jmir.2959
Descripción
Sumario:BACKGROUND: The traditional otorhinoendoscope is widely used in the diagnosis of a variety of ear and nose diseases, but only one doctor can use it at a time. It is also very difficult to share observations from one doctor with another doctor. With advances in electronic health technology, the extended potential application of smartphones to support medical practice or mobile health has grown steadily. OBJECTIVE: The first phase of the study discussed how smartphones may be used for otorhinoscopic imaging and image management via an innovative adaptor. The second phase of the study was to evaluate the diagnostic capability of the smartphone-based otorhinoendoscope, as compared to the traditional otorhinoendoscope, and its application in mobile health and teleotolaryngology. METHODS: We designed a unique adaptor to connect the otorhinoendoscope and smartphone in order to perform smartphone-based otorhinoendoscopy. The main aim was to transform the smartphone into an otorhinoendoscope. We devised a method that would allow us to use the smartphone’s camera to capture otorhinoscopic images. Using a freely available Web-based real-time communication application platform and the 3G (or WIFI) network, the smartphone-based otorhinoendoscope could synchronize the smartphone-based otorhinoscopic image with smartphones, tablet PCs, computer notebooks, or personal computers. RESULTS: We investigated the feasibility of telemedicine using a smartphone, tablet PC, and computer notebook. Six types of clinical otorhinoscopic images were acquired via the smartphone-based otorhinoendoscope from six patients, which were examined in this study. Three teleconsultants (doctors A, B, and C) reviewed the six types of clinical otorhinoscopic images and made a telediagnosis. When compared to the face-to-face diagnosis, which was made in-person via a traditional otorhinoendoscope, the three teleconsultants obtained scores of a correct primary telediagnosis 83% (5/6), 100% (6/6), and 100% (6/6) of the time, respectively. When the clinical data were provided, the three teleconsultants obtained a correct secondary telediagnosis score of 100% (6/6), 100% (6/6), and 100% (6/6) of the time, respectively. CONCLUSIONS: The use of previously available technologies in the absence of any additional expensive devices could significantly increase the quality of diagnostics while lowering extraneous costs. Furthermore, this could also increase the connectivity between most isolated family doctors and remote referral centers.