Cargando…
The Biochemistry of Vitreoscilla hemoglobin
The hemoglobin (VHb) from Vitreoscilla was the first bacterial hemoglobin discovered. Its structure and function have been extensively investigated, and engineering of a wide variety of heterologous organisms to express VHb has been performed to increase their growth and productivity. This strategy...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology (RNCSB) Organization
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962134/ https://www.ncbi.nlm.nih.gov/pubmed/24688662 http://dx.doi.org/10.5936/csbj.201210002 |
_version_ | 1782308388590321664 |
---|---|
author | Stark, Benjamin C. Dikshit, Kanak L. Pagilla, Krishna R. |
author_facet | Stark, Benjamin C. Dikshit, Kanak L. Pagilla, Krishna R. |
author_sort | Stark, Benjamin C. |
collection | PubMed |
description | The hemoglobin (VHb) from Vitreoscilla was the first bacterial hemoglobin discovered. Its structure and function have been extensively investigated, and engineering of a wide variety of heterologous organisms to express VHb has been performed to increase their growth and productivity. This strategy has shown promise in applications as far-ranging as the production of antibiotics and petrochemical replacements by microorganisms to increasing stress tolerance in plants. These applications of “VHb technology” have generally been of the “black box” variety, wherein the endpoint studied is an increase in the levels of a certain product or improved growth and survival. Their eventual optimization, however, will require a thorough understanding of the various functions and activities of VHb, and how VHb expression ripples to affect metabolism more generally. Here we review the current knowledge of these topics. VHb's functions all involve oxygen binding (and often delivery) in one way or another. Several biochemical and structure-function studies have provided an insight into the molecular details of this binding and delivery. VHb activities are varied. They include supply of oxygen to oxygenases and the respiratory chain, particularly under low oxygen conditions; oxygen sensing and modulation of transcription factor activity; and detoxification of NO, and seem to require interactions of VHb with “partner proteins”. VHb expression affects the levels of ATP and NADH, although not enormously. VHb expression may affect the level of many compounds of intermediary metabolism, and, apparently, alters the levels of expression of many genes. Thus, the metabolic changes in organisms engineered to express VHb are likely to be numerous and complicated. |
format | Online Article Text |
id | pubmed-3962134 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Research Network of Computational and Structural Biotechnology (RNCSB) Organization |
record_format | MEDLINE/PubMed |
spelling | pubmed-39621342014-03-31 The Biochemistry of Vitreoscilla hemoglobin Stark, Benjamin C. Dikshit, Kanak L. Pagilla, Krishna R. Comput Struct Biotechnol J Review Articles The hemoglobin (VHb) from Vitreoscilla was the first bacterial hemoglobin discovered. Its structure and function have been extensively investigated, and engineering of a wide variety of heterologous organisms to express VHb has been performed to increase their growth and productivity. This strategy has shown promise in applications as far-ranging as the production of antibiotics and petrochemical replacements by microorganisms to increasing stress tolerance in plants. These applications of “VHb technology” have generally been of the “black box” variety, wherein the endpoint studied is an increase in the levels of a certain product or improved growth and survival. Their eventual optimization, however, will require a thorough understanding of the various functions and activities of VHb, and how VHb expression ripples to affect metabolism more generally. Here we review the current knowledge of these topics. VHb's functions all involve oxygen binding (and often delivery) in one way or another. Several biochemical and structure-function studies have provided an insight into the molecular details of this binding and delivery. VHb activities are varied. They include supply of oxygen to oxygenases and the respiratory chain, particularly under low oxygen conditions; oxygen sensing and modulation of transcription factor activity; and detoxification of NO, and seem to require interactions of VHb with “partner proteins”. VHb expression affects the levels of ATP and NADH, although not enormously. VHb expression may affect the level of many compounds of intermediary metabolism, and, apparently, alters the levels of expression of many genes. Thus, the metabolic changes in organisms engineered to express VHb are likely to be numerous and complicated. Research Network of Computational and Structural Biotechnology (RNCSB) Organization 2012-10-29 /pmc/articles/PMC3962134/ /pubmed/24688662 http://dx.doi.org/10.5936/csbj.201210002 Text en © Stark et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly cited. |
spellingShingle | Review Articles Stark, Benjamin C. Dikshit, Kanak L. Pagilla, Krishna R. The Biochemistry of Vitreoscilla hemoglobin |
title | The Biochemistry of Vitreoscilla hemoglobin |
title_full | The Biochemistry of Vitreoscilla hemoglobin |
title_fullStr | The Biochemistry of Vitreoscilla hemoglobin |
title_full_unstemmed | The Biochemistry of Vitreoscilla hemoglobin |
title_short | The Biochemistry of Vitreoscilla hemoglobin |
title_sort | biochemistry of vitreoscilla hemoglobin |
topic | Review Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962134/ https://www.ncbi.nlm.nih.gov/pubmed/24688662 http://dx.doi.org/10.5936/csbj.201210002 |
work_keys_str_mv | AT starkbenjaminc thebiochemistryofvitreoscillahemoglobin AT dikshitkanakl thebiochemistryofvitreoscillahemoglobin AT pagillakrishnar thebiochemistryofvitreoscillahemoglobin AT starkbenjaminc biochemistryofvitreoscillahemoglobin AT dikshitkanakl biochemistryofvitreoscillahemoglobin AT pagillakrishnar biochemistryofvitreoscillahemoglobin |