Cargando…

Recent advances in functional region prediction by using structural and evolutionary information – Remaining problems and future extensions

Structural genomics projects have solved many new structures with unknown functions. One strategy to investigate the function of a structure is to computationally find the functionally important residues or regions on it. Therefore, the development of functional region prediction methods has become...

Descripción completa

Detalles Bibliográficos
Autores principales: Nemoto, Wataru, Saito, Akira, Oikawa, Hayato
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology (RNCSB) Organization 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962155/
https://www.ncbi.nlm.nih.gov/pubmed/24688747
http://dx.doi.org/10.5936/csbj.201308007
Descripción
Sumario:Structural genomics projects have solved many new structures with unknown functions. One strategy to investigate the function of a structure is to computationally find the functionally important residues or regions on it. Therefore, the development of functional region prediction methods has become an important research subject. An effective approach is to use a method employing structural and evolutionary information, such as the evolutionary trace (ET) method. ET ranks the residues of a protein structure by calculating the scores for relative evolutionary importance, and locates functionally important sites by identifying spatial clusters of highly ranked residues. After ET was developed, numerous ET-like methods were subsequently reported, and many of them are in practical use, although they require certain conditions. In this mini review, we first introduce the remaining problems and the recent improvements in the methods using structural and evolutionary information. We then summarize the recent developments of the methods. Finally, we conclude by describing possible extensions of the evolution- and structure-based methods.