Cargando…

From plant genomes to protein families: computational tools

The development of new high-throughput sequencing technologies has increased dramatically the number of successful genomic projects. Thus, draft genomic sequences of more than 60 plant species are currently available. Suitable bioinformatics tools are being developed to assemble, annotate and analyz...

Descripción completa

Detalles Bibliográficos
Autor principal: Martinez, Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology (RNCSB) Organization 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962197/
https://www.ncbi.nlm.nih.gov/pubmed/24688740
http://dx.doi.org/10.5936/csbj.201307001
Descripción
Sumario:The development of new high-throughput sequencing technologies has increased dramatically the number of successful genomic projects. Thus, draft genomic sequences of more than 60 plant species are currently available. Suitable bioinformatics tools are being developed to assemble, annotate and analyze the enormous number of sequences produced. In this context, specific plant comparative genomic databases are become powerful tools for gene family annotation in plant clades. In this mini-review, the current state-of-art of genomic projects is glossed. Besides, the computational tools developed to compare genomic data are compiled.