Cargando…
Fusing similarity rankings in ligand-based virtual screening
Data fusion is the name given to a range of methods for combining multiple sources of evidence. This mini-review summarizes the use of one such class of methods for combining the rankings obtained when similarity searching is used for ligand-based virtual screening. Two main approaches are described...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology (RNCSB) Organization
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962232/ https://www.ncbi.nlm.nih.gov/pubmed/24688695 http://dx.doi.org/10.5936/csbj.201302002 |
Sumario: | Data fusion is the name given to a range of methods for combining multiple sources of evidence. This mini-review summarizes the use of one such class of methods for combining the rankings obtained when similarity searching is used for ligand-based virtual screening. Two main approaches are described: similarity fusion involves combining rankings from single searches based on multiple similarity measures; and group fusion involves combining rankings from multiple searches based on a single similarity measure. The review then focuses on the rules that are available for combining similarity rankings, and on the evidence that exists for the superiority of fusion-based methods over conventional similarity searching. |
---|