Cargando…

A Dense Linkage Map for Chinook salmon (Oncorhynchus tshawytscha) Reveals Variable Chromosomal Divergence After an Ancestral Whole Genome Duplication Event

Comparisons between the genomes of salmon species reveal that they underwent extensive chromosomal rearrangements following whole genome duplication that occurred in their lineage 58−63 million years ago. Extant salmonids are diploid, but occasional pairing between homeologous chromosomes exists in...

Descripción completa

Detalles Bibliográficos
Autores principales: Brieuc, Marine S. O., Waters, Charles D., Seeb, James E., Naish, Kerry A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962484/
https://www.ncbi.nlm.nih.gov/pubmed/24381192
http://dx.doi.org/10.1534/g3.113.009316
Descripción
Sumario:Comparisons between the genomes of salmon species reveal that they underwent extensive chromosomal rearrangements following whole genome duplication that occurred in their lineage 58−63 million years ago. Extant salmonids are diploid, but occasional pairing between homeologous chromosomes exists in males. The consequences of re-diploidization can be characterized by mapping the position of duplicated loci in such species. Linkage maps are also a valuable tool for genome-wide applications such as genome-wide association studies, quantitative trait loci mapping or genome scans. Here, we investigated chromosomal evolution in Chinook salmon (Oncorhynchus tshawytscha) after genome duplication by mapping 7146 restriction-site associated DNA loci in gynogenetic haploid, gynogenetic diploid, and diploid crosses. In the process, we developed a reference database of restriction-site associated DNA loci for Chinook salmon comprising 48528 non-duplicated loci and 6409 known duplicated loci, which will facilitate locus identification and data sharing. We created a very dense linkage map anchored to all 34 chromosomes for the species, and all arms were identified through centromere mapping. The map positions of 799 duplicated loci revealed that homeologous pairs have diverged at different rates following whole genome duplication, and that degree of differentiation along arms was variable. Many of the homeologous pairs with high numbers of duplicated markers appear conserved with other salmon species, suggesting that retention of conserved homeologous pairing in some arms preceded species divergence. As chromosome arms are highly conserved across species, the major resources developed for Chinook salmon in this study are also relevant for other related species.