Cargando…

On the Number of Spanning Trees of Graphs

We establish some bounds for the number of spanning trees of connected graphs in terms of the number of vertices (n), the number of edges (m), maximum vertex degree (Δ(1)), minimum vertex degree (δ), first Zagreb index (M (1)), and Randić index (R (−1)).

Detalles Bibliográficos
Autores principales: Bozkurt, Ş. Burcu, Bozkurt, Durmuş
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962762/
https://www.ncbi.nlm.nih.gov/pubmed/24688378
http://dx.doi.org/10.1155/2014/294038
_version_ 1782308459102863360
author Bozkurt, Ş. Burcu
Bozkurt, Durmuş
author_facet Bozkurt, Ş. Burcu
Bozkurt, Durmuş
author_sort Bozkurt, Ş. Burcu
collection PubMed
description We establish some bounds for the number of spanning trees of connected graphs in terms of the number of vertices (n), the number of edges (m), maximum vertex degree (Δ(1)), minimum vertex degree (δ), first Zagreb index (M (1)), and Randić index (R (−1)).
format Online
Article
Text
id pubmed-3962762
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-39627622014-03-31 On the Number of Spanning Trees of Graphs Bozkurt, Ş. Burcu Bozkurt, Durmuş ScientificWorldJournal Research Article We establish some bounds for the number of spanning trees of connected graphs in terms of the number of vertices (n), the number of edges (m), maximum vertex degree (Δ(1)), minimum vertex degree (δ), first Zagreb index (M (1)), and Randić index (R (−1)). Hindawi Publishing Corporation 2014-02-10 /pmc/articles/PMC3962762/ /pubmed/24688378 http://dx.doi.org/10.1155/2014/294038 Text en Copyright © 2014 Ş. B. Bozkurt and D. Bozkurt. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Bozkurt, Ş. Burcu
Bozkurt, Durmuş
On the Number of Spanning Trees of Graphs
title On the Number of Spanning Trees of Graphs
title_full On the Number of Spanning Trees of Graphs
title_fullStr On the Number of Spanning Trees of Graphs
title_full_unstemmed On the Number of Spanning Trees of Graphs
title_short On the Number of Spanning Trees of Graphs
title_sort on the number of spanning trees of graphs
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962762/
https://www.ncbi.nlm.nih.gov/pubmed/24688378
http://dx.doi.org/10.1155/2014/294038
work_keys_str_mv AT bozkurtsburcu onthenumberofspanningtreesofgraphs
AT bozkurtdurmus onthenumberofspanningtreesofgraphs