Cargando…
Machine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registry
OBJECTIVES: Using the prediction of cancer outcome as a model, we have tested the hypothesis that through analysing routinely collected digital data contained in an electronic administrative record (EAR), using machine-learning techniques, we could enhance conventional methods in predicting clinical...
Autores principales: | Gupta, Sunil, Tran, Truyen, Luo, Wei, Phung, Dinh, Kennedy, Richard Lee, Broad, Adam, Campbell, David, Kipp, David, Singh, Madhu, Khasraw, Mustafa, Matheson, Leigh, Ashley, David M, Venkatesh, Svetha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963101/ https://www.ncbi.nlm.nih.gov/pubmed/24643167 http://dx.doi.org/10.1136/bmjopen-2013-004007 |
Ejemplares similares
-
Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments
por: Tran, Truyen, et al.
Publicado: (2014) -
Application of Machine Learning Techniques to Identify Data Reliability and Factors Affecting Outcome After Stroke Using Electronic Administrative Records
por: Rana, Santu, et al.
Publicado: (2021) -
Forecasting Daily Patient Outflow From a Ward Having No Real-Time Clinical Data
por: Gopakumar, Shivapratap, et al.
Publicado: (2016) -
A framework for feature extraction from hospital medical data with applications in risk prediction
por: Tran, Truyen, et al.
Publicado: (2014) -
Screening for post 32-week preterm birth risk: how helpful is routine perinatal data collection?
por: Luo, Wei, et al.
Publicado: (2016)