Cargando…
Biodistribution of locally or systemically transplanted osteoblast-like cells
OBJECTIVES: In order to ensure safety of the cell-based therapy for bone regeneration, we examined in vivo biodistribution of locally or systemically transplanted osteoblast-like cells generated from bone marrow (BM) derived mononuclear cells. METHODS: BM cells obtained from a total of 13 Sprague-Da...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
British Editorial Society of Bone and Joint Surgery
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963507/ https://www.ncbi.nlm.nih.gov/pubmed/24652780 http://dx.doi.org/10.1302/2046-3758.33.2000257 |
Sumario: | OBJECTIVES: In order to ensure safety of the cell-based therapy for bone regeneration, we examined in vivo biodistribution of locally or systemically transplanted osteoblast-like cells generated from bone marrow (BM) derived mononuclear cells. METHODS: BM cells obtained from a total of 13 Sprague-Dawley (SD) green fluorescent protein transgenic (GFP-Tg) rats were culture-expanded in an osteogenic differentiation medium for three weeks. Osteoblast-like cells were then locally transplanted with collagen scaffolds to the rat model of segmental bone defect. Donor cells were also intravenously infused to the normal Sprague-Dawley (SD) rats for systemic biodistribution. The flow cytometric and histological analyses were performed for cellular tracking after transplantation. RESULTS: Locally transplanted donor cells remained within the vicinity of the transplantation site without migrating to other organs. Systemically administered large amounts of osteoblast-like cells were cleared from various organ tissues within three days of transplantation and did not show any adverse effects in the transplanted rats. CONCLUSIONS: We demonstrated a precise assessment of donor cell biodistribution that further augments prospective utility of regenerative cell therapy. |
---|