Cargando…
Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1
A soil bacterium, Bacillus subtilis, isolated from the rhizosphere of Chilli, showed high antagonistic activity against Colletotrichum gloeosporioides OGC1. A clear inhibition zone of 0.5–1 cm was observed in dual plate assay. Microscopic observations showed a clear hyphal lysis and degradation of f...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964249/ https://www.ncbi.nlm.nih.gov/pubmed/28324440 http://dx.doi.org/10.1007/s13205-013-0134-4 |
Sumario: | A soil bacterium, Bacillus subtilis, isolated from the rhizosphere of Chilli, showed high antagonistic activity against Colletotrichum gloeosporioides OGC1. A clear inhibition zone of 0.5–1 cm was observed in dual plate assay. Microscopic observations showed a clear hyphal lysis and degradation of fungal cell wall. In dual liquid cultures, the B. subtilis strain inhibited the C. gloeosporioides up to 100 % in terms of dry weight. This strain also produced a clear halo region on chitin agar medium plates containing 0.5 % colloidal chitin, indicating that it excretes chitinase. The strain also produced other mycolytic enzymes—glucanase and cellulase, demonstrated by a clear zone of hydrolysis of yeast cell wall glucan (YCW 0.1 % v/v) and carboxymethylcellulose (CMC 0.1 % v/v). In liquid cultures, the strain showed appreciable levels of chitinase, glucanase and cellulase activities and hydrolytic activity with C. gloeosporioides OGC1 mycelia as the substrate. The role of the B. subtilis strain in suppressing the fungal growth in vitro was studied in comparison with a UV mutant of that strain, which lacked both antagonistic and hydrolytic activity. The mycolytic enzyme mediated antagonism of B. subtilis was further demonstrated by heat inactivation (70–100 °C), treatment with trypsin and TCA of the crude enzyme extract which lacked antifungal property also. Treatment of the chilli seeds with Bacillus sp. culture showed 100 % germination index similar to the untreated seeds. The treatment of the seed with co-inoculation of the pathogen with Bacillus sp. culture showed 65 % reduction in disease incidence by the treatment as compared to the seed treated with pathogen alone (77.5 %). |
---|