Cargando…
Understanding the conservation patterns and molecular phylogenetics of human death receptors family through computational biology
Human death receptors (TNFR1, FAS, DR3, DR4, DR5, DR6 and TNFBR), primarily from tumor necrosis receptor super family, play an essential role in the process of the extrinsic pathway of apoptosis. We performed conserved domain, amino acid residues analysis in which cysteine residues were found to be...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964250/ https://www.ncbi.nlm.nih.gov/pubmed/28324447 http://dx.doi.org/10.1007/s13205-013-0141-5 |
Sumario: | Human death receptors (TNFR1, FAS, DR3, DR4, DR5, DR6 and TNFBR), primarily from tumor necrosis receptor super family, play an essential role in the process of the extrinsic pathway of apoptosis. We performed conserved domain, amino acid residues analysis in which cysteine residues were found to be highly conserved for all the family members. Sixteen (16) highly conserved residues were observed in TNFR1, DR3 and TNFBR; and in case of Fas, only seven (7) residues are highly conserved. From molecular phylogenetics, we found that DR5 and DR4, TNFR1 and DR3 and TNFR1 and DR3 had the same point of origin. Alternatively, Fas was found to be distant from the rest of the death receptors. A network map was developed to explain these proteins are not only interlinked among themselves, but also interlinked with several other proteins. We have also observed from this system that scores of all the nodes ranges from 0.996 to 0.999. |
---|