Cargando…
Effects of Growth Phase and Temperature on σ (B) Activity within a Listeria monocytogenes Population: Evidence for RsbV-Independent Activation of σ (B) at Refrigeration Temperatures
The alternative sigma factor σ (B) of Listeria monocytogenes is responsible for regulating the transcription of many of the genes necessary for adaptation to both food-related stresses and to conditions found within the gastrointestinal tract of the host. The present study sought to investigate the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964741/ https://www.ncbi.nlm.nih.gov/pubmed/24734238 http://dx.doi.org/10.1155/2014/641647 |
Sumario: | The alternative sigma factor σ (B) of Listeria monocytogenes is responsible for regulating the transcription of many of the genes necessary for adaptation to both food-related stresses and to conditions found within the gastrointestinal tract of the host. The present study sought to investigate the influence of growth phase and temperature on the activation of σ (B) within populations of L. monocytogenes EGD-e wild-type, ΔsigB, and ΔrsbV throughout growth at both 4°C and 37°C, using a reporter fusion that couples expression of EGFP to the strongly σ (B)-dependent promoter of lmo2230. A similar σ (B) activation pattern within the population was observed in wt-egfp at both temperatures, with the highest induction of σ (B) occurring in the early exponential phase of growth when the fluorescent population rapidly increased, eventually reaching the maximum in early stationary phase. Interestingly, induction of σ (B) activity was heterogeneous, with only a proportion of the cells in the wt-egfp population being fluorescent above the background autofluorescence level. Moreover, significant RsbV-independent activation of σ (B) was observed during growth at 4°C. This result suggests that an alternative route to σ (B) activation exists in the absence of RsbV, a finding that is not explained by the current model for σ (B) regulation. |
---|