Cargando…

Lipoprotein Metabolism Indicators Improve Cardiovascular Risk Prediction

BACKGROUND: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to inves...

Descripción completa

Detalles Bibliográficos
Autores principales: van Schalkwijk, Daniël B., de Graaf, Albert A., Tsivtsivadze, Evgeni, Parnell, Laurence D., van der Werff-van der Vat, Bianca J. C., van Ommen, Ben, van der Greef, Jan, Ordovás, José M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965475/
https://www.ncbi.nlm.nih.gov/pubmed/24667559
http://dx.doi.org/10.1371/journal.pone.0092840
_version_ 1782308808831270912
author van Schalkwijk, Daniël B.
de Graaf, Albert A.
Tsivtsivadze, Evgeni
Parnell, Laurence D.
van der Werff-van der Vat, Bianca J. C.
van Ommen, Ben
van der Greef, Jan
Ordovás, José M.
author_facet van Schalkwijk, Daniël B.
de Graaf, Albert A.
Tsivtsivadze, Evgeni
Parnell, Laurence D.
van der Werff-van der Vat, Bianca J. C.
van Ommen, Ben
van der Greef, Jan
Ordovás, José M.
author_sort van Schalkwijk, Daniël B.
collection PubMed
description BACKGROUND: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to investigate whether lipoprotein metabolism indicators can improve cardiovascular risk prediction and therapy management. METHODS AND RESULTS: We calculated lipoprotein metabolism indicators for 1981 subjects (145 cases, 1836 controls) from the Framingham Heart Study offspring cohort in which NMR lipoprotein profiles were measured. We applied a statistical learning algorithm using a support vector machine to select conventional risk factors and lipoprotein metabolism indicators that contributed to predicting risk for general cardiovascular disease. Risk prediction was quantified by the change in the Area-Under-the-ROC-Curve (ΔAUC) and by risk reclassification (Net Reclassification Improvement (NRI) and Integrated Discrimination Improvement (IDI)). Two VLDL lipoprotein metabolism indicators (VLDL(E) and VLDL(H)) improved cardiovascular risk prediction. We added these indicators to a multivariate model with the best performing conventional risk markers. Our method significantly improved both CVD prediction and risk reclassification. CONCLUSIONS: Two calculated VLDL metabolism indicators significantly improved cardiovascular risk prediction. These indicators may help to reduce prescription of unnecessary cholesterol-lowering medication, reducing costs and possible side-effects. For clinical application, further validation is required.
format Online
Article
Text
id pubmed-3965475
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-39654752014-03-27 Lipoprotein Metabolism Indicators Improve Cardiovascular Risk Prediction van Schalkwijk, Daniël B. de Graaf, Albert A. Tsivtsivadze, Evgeni Parnell, Laurence D. van der Werff-van der Vat, Bianca J. C. van Ommen, Ben van der Greef, Jan Ordovás, José M. PLoS One Research Article BACKGROUND: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to investigate whether lipoprotein metabolism indicators can improve cardiovascular risk prediction and therapy management. METHODS AND RESULTS: We calculated lipoprotein metabolism indicators for 1981 subjects (145 cases, 1836 controls) from the Framingham Heart Study offspring cohort in which NMR lipoprotein profiles were measured. We applied a statistical learning algorithm using a support vector machine to select conventional risk factors and lipoprotein metabolism indicators that contributed to predicting risk for general cardiovascular disease. Risk prediction was quantified by the change in the Area-Under-the-ROC-Curve (ΔAUC) and by risk reclassification (Net Reclassification Improvement (NRI) and Integrated Discrimination Improvement (IDI)). Two VLDL lipoprotein metabolism indicators (VLDL(E) and VLDL(H)) improved cardiovascular risk prediction. We added these indicators to a multivariate model with the best performing conventional risk markers. Our method significantly improved both CVD prediction and risk reclassification. CONCLUSIONS: Two calculated VLDL metabolism indicators significantly improved cardiovascular risk prediction. These indicators may help to reduce prescription of unnecessary cholesterol-lowering medication, reducing costs and possible side-effects. For clinical application, further validation is required. Public Library of Science 2014-03-25 /pmc/articles/PMC3965475/ /pubmed/24667559 http://dx.doi.org/10.1371/journal.pone.0092840 Text en © 2014 van Schalkwijk et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
van Schalkwijk, Daniël B.
de Graaf, Albert A.
Tsivtsivadze, Evgeni
Parnell, Laurence D.
van der Werff-van der Vat, Bianca J. C.
van Ommen, Ben
van der Greef, Jan
Ordovás, José M.
Lipoprotein Metabolism Indicators Improve Cardiovascular Risk Prediction
title Lipoprotein Metabolism Indicators Improve Cardiovascular Risk Prediction
title_full Lipoprotein Metabolism Indicators Improve Cardiovascular Risk Prediction
title_fullStr Lipoprotein Metabolism Indicators Improve Cardiovascular Risk Prediction
title_full_unstemmed Lipoprotein Metabolism Indicators Improve Cardiovascular Risk Prediction
title_short Lipoprotein Metabolism Indicators Improve Cardiovascular Risk Prediction
title_sort lipoprotein metabolism indicators improve cardiovascular risk prediction
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965475/
https://www.ncbi.nlm.nih.gov/pubmed/24667559
http://dx.doi.org/10.1371/journal.pone.0092840
work_keys_str_mv AT vanschalkwijkdanielb lipoproteinmetabolismindicatorsimprovecardiovascularriskprediction
AT degraafalberta lipoproteinmetabolismindicatorsimprovecardiovascularriskprediction
AT tsivtsivadzeevgeni lipoproteinmetabolismindicatorsimprovecardiovascularriskprediction
AT parnelllaurenced lipoproteinmetabolismindicatorsimprovecardiovascularriskprediction
AT vanderwerffvandervatbiancajc lipoproteinmetabolismindicatorsimprovecardiovascularriskprediction
AT vanommenben lipoproteinmetabolismindicatorsimprovecardiovascularriskprediction
AT vandergreefjan lipoproteinmetabolismindicatorsimprovecardiovascularriskprediction
AT ordovasjosem lipoproteinmetabolismindicatorsimprovecardiovascularriskprediction