Cargando…

MicroRNAs: regulators of cancer metastasis and epithelial-mesenchymal transition (EMT)

Tumor metastasis is the main cause of death in patients with solid tumors. The epithelial-mesenchymal transition (EMT) process, in which epithelial cells are converted into mesenchymal cells, is frequently activated during cancer invasion and metastasis. MicroRNAs (miRNAs) are small, non-coding RNAs...

Descripción completa

Detalles Bibliográficos
Autor principal: Ding, Xiang-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sun Yat-sen University Cancer Center 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966144/
https://www.ncbi.nlm.nih.gov/pubmed/24016392
http://dx.doi.org/10.5732/cjc.013.10094
Descripción
Sumario:Tumor metastasis is the main cause of death in patients with solid tumors. The epithelial-mesenchymal transition (EMT) process, in which epithelial cells are converted into mesenchymal cells, is frequently activated during cancer invasion and metastasis. MicroRNAs (miRNAs) are small, non-coding RNAs that provide widespread expressional control by repressing mRNA translation and inducing mRNA degradation. The fundamental roles of miRNAs in tumor growth and metastasis have been increasingly well recognized. A growing number of miRNAs are reported to regulate tumor invasion/metastasis through EMT-related and/or non-EMT–related mechanisms. In this review, we discuss the functional role and molecular mechanism of miRNAs in regulating cancer metastasis and EMT.