Cargando…

Tract-Based Bayesian Multivariate Analysis of Mild Traumatic Brain Injury

Purpose. Detecting brain regions characterizing mild traumatic brain injury (mTBI) by combining Tract-Based Spatial Statistics (TBSS) and Graphical-model-based Multivariate Analysis (GAMMA). Materials and Methods. This study included 39 mTBI patients and 28 normal controls. Local research ethics com...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yongkang, Wang, Tianyao, Chen, Xiao, Zhang, Jianhua, Zhou, Guoxing, Wang, Zhongqiu, Chen, Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966337/
https://www.ncbi.nlm.nih.gov/pubmed/24711857
http://dx.doi.org/10.1155/2014/120182
Descripción
Sumario:Purpose. Detecting brain regions characterizing mild traumatic brain injury (mTBI) by combining Tract-Based Spatial Statistics (TBSS) and Graphical-model-based Multivariate Analysis (GAMMA). Materials and Methods. This study included 39 mTBI patients and 28 normal controls. Local research ethics committee approved this prospective study. Diffusion-tensor imaging was performed in mTBI patients within 7 days of injury. Skeletonized fractional anisotropy (FA) maps were generated by using TBSS. Brain regions characterizing mTBI were detected by GAMMA. Results. Two clusters of lower frontal white matter FA were present in mTBI patients. We constructed classifiers based on FA values in these two clusters to differentiate mTBI and controls. The mean accuracy, sensitivity, and specificity, across five different classifiers, were 0.80, 0.94, and 0.61, respectively. Conclusions. Combining TBSS and GAMMA can detect neuroimaging biomarkers characterizing mTBI.