Cargando…

Granular Computing Classification Algorithms Based on Distance Measures between Granules from the View of Set

Granular computing classification algorithms are proposed based on distance measures between two granules from the view of set. Firstly, granules are represented as the forms of hyperdiamond, hypersphere, hypercube, and hyperbox. Secondly, the distance measure between two granules is defined from th...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Hongbing, Liu, Chunhua, Wu, Chang-an
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966490/
https://www.ncbi.nlm.nih.gov/pubmed/24737998
http://dx.doi.org/10.1155/2014/656790
Descripción
Sumario:Granular computing classification algorithms are proposed based on distance measures between two granules from the view of set. Firstly, granules are represented as the forms of hyperdiamond, hypersphere, hypercube, and hyperbox. Secondly, the distance measure between two granules is defined from the view of set, and the union operator between two granules is formed to obtain the granule set including the granules with different granularity. Thirdly the threshold of granularity determines the union between two granules and is used to form the granular computing classification algorithms based on distance measures (DGrC). The benchmark datasets in UCI Machine Learning Repository are used to verify the performance of DGrC, and experimental results show that DGrC improved the testing accuracies.