Cargando…

Efficient Parameter Estimation of Generalizable Coarse-Grained Protein Force Fields Using Contrastive Divergence: A Maximum Likelihood Approach

[Image: see text] Maximum Likelihood (ML) optimization schemes are widely used for parameter inference. They maximize the likelihood of some experimentally observed data, with respect to the model parameters iteratively, following the gradient of the logarithm of the likelihood. Here, we employ a ML...

Descripción completa

Detalles Bibliográficos
Autores principales: Várnai, Csilla, Burkoff, Nikolas S., Wild, David L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2013
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966533/
https://www.ncbi.nlm.nih.gov/pubmed/24683370
http://dx.doi.org/10.1021/ct400628h
_version_ 1782308925143515136
author Várnai, Csilla
Burkoff, Nikolas S.
Wild, David L.
author_facet Várnai, Csilla
Burkoff, Nikolas S.
Wild, David L.
author_sort Várnai, Csilla
collection PubMed
description [Image: see text] Maximum Likelihood (ML) optimization schemes are widely used for parameter inference. They maximize the likelihood of some experimentally observed data, with respect to the model parameters iteratively, following the gradient of the logarithm of the likelihood. Here, we employ a ML inference scheme to infer a generalizable, physics-based coarse-grained protein model (which includes Go̅-like biasing terms to stabilize secondary structure elements in room-temperature simulations), using native conformations of a training set of proteins as the observed data. Contrastive divergence, a novel statistical machine learning technique, is used to efficiently approximate the direction of the gradient ascent, which enables the use of a large training set of proteins. Unlike previous work, the generalizability of the protein model allows the folding of peptides and a protein (protein G) which are not part of the training set. We compare the same force field with different van der Waals (vdW) potential forms: a hard cutoff model, and a Lennard-Jones (LJ) potential with vdW parameters inferred or adopted from the CHARMM or AMBER force fields. Simulations of peptides and protein G show that the LJ model with inferred parameters outperforms the hard cutoff potential, which is consistent with previous observations. Simulations using the LJ potential with inferred vdW parameters also outperforms the protein models with adopted vdW parameter values, demonstrating that model parameters generally cannot be used with force fields with different energy functions. The software is available at https://sites.google.com/site/crankite/.
format Online
Article
Text
id pubmed-3966533
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-39665332014-03-27 Efficient Parameter Estimation of Generalizable Coarse-Grained Protein Force Fields Using Contrastive Divergence: A Maximum Likelihood Approach Várnai, Csilla Burkoff, Nikolas S. Wild, David L. J Chem Theory Comput [Image: see text] Maximum Likelihood (ML) optimization schemes are widely used for parameter inference. They maximize the likelihood of some experimentally observed data, with respect to the model parameters iteratively, following the gradient of the logarithm of the likelihood. Here, we employ a ML inference scheme to infer a generalizable, physics-based coarse-grained protein model (which includes Go̅-like biasing terms to stabilize secondary structure elements in room-temperature simulations), using native conformations of a training set of proteins as the observed data. Contrastive divergence, a novel statistical machine learning technique, is used to efficiently approximate the direction of the gradient ascent, which enables the use of a large training set of proteins. Unlike previous work, the generalizability of the protein model allows the folding of peptides and a protein (protein G) which are not part of the training set. We compare the same force field with different van der Waals (vdW) potential forms: a hard cutoff model, and a Lennard-Jones (LJ) potential with vdW parameters inferred or adopted from the CHARMM or AMBER force fields. Simulations of peptides and protein G show that the LJ model with inferred parameters outperforms the hard cutoff potential, which is consistent with previous observations. Simulations using the LJ potential with inferred vdW parameters also outperforms the protein models with adopted vdW parameter values, demonstrating that model parameters generally cannot be used with force fields with different energy functions. The software is available at https://sites.google.com/site/crankite/. American Chemical Society 2013-11-15 2013-12-10 /pmc/articles/PMC3966533/ /pubmed/24683370 http://dx.doi.org/10.1021/ct400628h Text en Copyright © 2013 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html)
spellingShingle Várnai, Csilla
Burkoff, Nikolas S.
Wild, David L.
Efficient Parameter Estimation of Generalizable Coarse-Grained Protein Force Fields Using Contrastive Divergence: A Maximum Likelihood Approach
title Efficient Parameter Estimation of Generalizable Coarse-Grained Protein Force Fields Using Contrastive Divergence: A Maximum Likelihood Approach
title_full Efficient Parameter Estimation of Generalizable Coarse-Grained Protein Force Fields Using Contrastive Divergence: A Maximum Likelihood Approach
title_fullStr Efficient Parameter Estimation of Generalizable Coarse-Grained Protein Force Fields Using Contrastive Divergence: A Maximum Likelihood Approach
title_full_unstemmed Efficient Parameter Estimation of Generalizable Coarse-Grained Protein Force Fields Using Contrastive Divergence: A Maximum Likelihood Approach
title_short Efficient Parameter Estimation of Generalizable Coarse-Grained Protein Force Fields Using Contrastive Divergence: A Maximum Likelihood Approach
title_sort efficient parameter estimation of generalizable coarse-grained protein force fields using contrastive divergence: a maximum likelihood approach
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966533/
https://www.ncbi.nlm.nih.gov/pubmed/24683370
http://dx.doi.org/10.1021/ct400628h
work_keys_str_mv AT varnaicsilla efficientparameterestimationofgeneralizablecoarsegrainedproteinforcefieldsusingcontrastivedivergenceamaximumlikelihoodapproach
AT burkoffnikolass efficientparameterestimationofgeneralizablecoarsegrainedproteinforcefieldsusingcontrastivedivergenceamaximumlikelihoodapproach
AT wilddavidl efficientparameterestimationofgeneralizablecoarsegrainedproteinforcefieldsusingcontrastivedivergenceamaximumlikelihoodapproach