Cargando…
Efficient Parameter Estimation of Generalizable Coarse-Grained Protein Force Fields Using Contrastive Divergence: A Maximum Likelihood Approach
[Image: see text] Maximum Likelihood (ML) optimization schemes are widely used for parameter inference. They maximize the likelihood of some experimentally observed data, with respect to the model parameters iteratively, following the gradient of the logarithm of the likelihood. Here, we employ a ML...
Autores principales: | Várnai, Csilla, Burkoff, Nikolas S., Wild, David L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2013
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966533/ https://www.ncbi.nlm.nih.gov/pubmed/24683370 http://dx.doi.org/10.1021/ct400628h |
Ejemplares similares
-
Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs
por: Várnai, Csilla, et al.
Publicado: (2017) -
Minimum Divergence Estimators, Maximum Likelihood and the Generalized Bootstrap
por: Broniatowski, Michel
Publicado: (2021) -
Maximum likelihood estimators for inverse problems with nuisance parameters
por: Bindslev, H
Publicado: (1997) -
Branch length estimation and divergence dating: estimates of error in Bayesian and maximum likelihood frameworks
por: Schwartz, Rachel S, et al.
Publicado: (2010) -
Accelerated maximum likelihood parameter estimation for stochastic biochemical systems
por: Daigle, Bernie J, et al.
Publicado: (2012)