Cargando…

The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles

BACKGROUND: Extracellular vesicles (EV), the collective term for vesicles released from cells, consist of vesicle species ranging in size from 30 nm to 5 µm in diameter. These vesicles are most commonly isolated by differential centrifugations, which pellets particles based on their differential mov...

Descripción completa

Detalles Bibliográficos
Autores principales: Cvjetkovic, Aleksander, Lötvall, Jan, Lässer, Cecilia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Co-Action Publishing 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967015/
https://www.ncbi.nlm.nih.gov/pubmed/24678386
http://dx.doi.org/10.3402/jev.v3.23111
_version_ 1782308969743646720
author Cvjetkovic, Aleksander
Lötvall, Jan
Lässer, Cecilia
author_facet Cvjetkovic, Aleksander
Lötvall, Jan
Lässer, Cecilia
author_sort Cvjetkovic, Aleksander
collection PubMed
description BACKGROUND: Extracellular vesicles (EV), the collective term for vesicles released from cells, consist of vesicle species ranging in size from 30 nm to 5 µm in diameter. These vesicles are most commonly isolated by differential centrifugations, which pellets particles based on their differential movement through the liquid medium in which they are immersed. Multiple parameters, including the utilization of different rotor types, can influence the yield and purity of isolated vesicles; however, the understanding of how these factors affect is limited. MATERIALS AND METHODS: Here, we compare the influence of multiple centrifugation parameters, including the use of swinging bucket and fixed angle rotors, as well as different centrifugation times, for the isolation of the smallest EVs, “exosomes.” In particular, we determine the yields of exosomal RNA and protein, as well as the nature of the isolated vesicles and possible protein contamination with methods such as electron microscopy, western blot and flow cytometry. RESULTS: Our results show that application of a specific g-force or rotation speed by itself does not predict the ability of pelleting exosomes, and that prolonged centrifugation times can achieve greater yields of exosomal RNA and protein, whereas very long centrifugation times result in excessive protein concentrations in the exosome pellet. CONCLUSION: In conclusion, rotor type, g-force and centrifugation times significantly influence exosome yield during centrifugation-based isolation procedures, and current commonly recommended isolation protocols may not be fully optimized for yield and purity of exosomes.
format Online
Article
Text
id pubmed-3967015
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Co-Action Publishing
record_format MEDLINE/PubMed
spelling pubmed-39670152014-03-27 The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles Cvjetkovic, Aleksander Lötvall, Jan Lässer, Cecilia J Extracell Vesicles Original Research Article BACKGROUND: Extracellular vesicles (EV), the collective term for vesicles released from cells, consist of vesicle species ranging in size from 30 nm to 5 µm in diameter. These vesicles are most commonly isolated by differential centrifugations, which pellets particles based on their differential movement through the liquid medium in which they are immersed. Multiple parameters, including the utilization of different rotor types, can influence the yield and purity of isolated vesicles; however, the understanding of how these factors affect is limited. MATERIALS AND METHODS: Here, we compare the influence of multiple centrifugation parameters, including the use of swinging bucket and fixed angle rotors, as well as different centrifugation times, for the isolation of the smallest EVs, “exosomes.” In particular, we determine the yields of exosomal RNA and protein, as well as the nature of the isolated vesicles and possible protein contamination with methods such as electron microscopy, western blot and flow cytometry. RESULTS: Our results show that application of a specific g-force or rotation speed by itself does not predict the ability of pelleting exosomes, and that prolonged centrifugation times can achieve greater yields of exosomal RNA and protein, whereas very long centrifugation times result in excessive protein concentrations in the exosome pellet. CONCLUSION: In conclusion, rotor type, g-force and centrifugation times significantly influence exosome yield during centrifugation-based isolation procedures, and current commonly recommended isolation protocols may not be fully optimized for yield and purity of exosomes. Co-Action Publishing 2014-03-25 /pmc/articles/PMC3967015/ /pubmed/24678386 http://dx.doi.org/10.3402/jev.v3.23111 Text en © 2014 Aleksander Cvjetkovic et al. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research Article
Cvjetkovic, Aleksander
Lötvall, Jan
Lässer, Cecilia
The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles
title The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles
title_full The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles
title_fullStr The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles
title_full_unstemmed The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles
title_short The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles
title_sort influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967015/
https://www.ncbi.nlm.nih.gov/pubmed/24678386
http://dx.doi.org/10.3402/jev.v3.23111
work_keys_str_mv AT cvjetkovicaleksander theinfluenceofrotortypeandcentrifugationtimeontheyieldandpurityofextracellularvesicles
AT lotvalljan theinfluenceofrotortypeandcentrifugationtimeontheyieldandpurityofextracellularvesicles
AT lassercecilia theinfluenceofrotortypeandcentrifugationtimeontheyieldandpurityofextracellularvesicles
AT cvjetkovicaleksander influenceofrotortypeandcentrifugationtimeontheyieldandpurityofextracellularvesicles
AT lotvalljan influenceofrotortypeandcentrifugationtimeontheyieldandpurityofextracellularvesicles
AT lassercecilia influenceofrotortypeandcentrifugationtimeontheyieldandpurityofextracellularvesicles