Cargando…

Diminished WNT → β-catenin → c-MYC signaling is a barrier for malignant progression of BRAF(V600E)-induced lung tumors

Oncogene-induced senescence (OIS) is proposed as a cellular defense mechanism that restrains malignant progression of oncogene-expressing, initiated tumor cells. Consistent with this, expression of BRAF(V600E) in the mouse lung epithelium elicits benign tumors that fail to progress to cancer due to...

Descripción completa

Detalles Bibliográficos
Autores principales: Juan, Joseph, Muraguchi, Teruyuki, Iezza, Gioia, Sears, Rosalie C., McMahon, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967046/
https://www.ncbi.nlm.nih.gov/pubmed/24589553
http://dx.doi.org/10.1101/gad.233627.113
Descripción
Sumario:Oncogene-induced senescence (OIS) is proposed as a cellular defense mechanism that restrains malignant progression of oncogene-expressing, initiated tumor cells. Consistent with this, expression of BRAF(V600E) in the mouse lung epithelium elicits benign tumors that fail to progress to cancer due to an apparent senescence-like proliferative arrest. Here we demonstrate that nuclear β-catenin → c-MYC signaling is essential for early stage proliferation of BRAF(V600E)-induced lung tumors and is inactivated in the subsequent senescence-like state. Furthermore, either β-catenin silencing or pharmacological blockade of Porcupine, an acyl-transferase essential for WNT ligand secretion and activity, significantly inhibited BRAF(V600E)-initiated lung tumorigenesis. Conversely, sustained activity of β-catenin or c-MYC significantly enhanced BRAF(V600E)-induced lung tumorigenesis and rescued the anti-tumor effects of Porcupine blockade. These data indicate that early stage BRAF(V600E)-induced lung tumors are WNT-dependent and suggest that inactivation of WNT → β-catenin → c-MYC signaling is a trigger for the senescence-like proliferative arrest that constrains the expansion and malignant progression of BRAF(V600E)-initiated lung tumors. Moreover, these data further suggest that the trigger for OIS in initiated BRAF(V600E)-expressing lung tumor cells is not simply a surfeit of signals from oncogenic BRAF but an insufficiency of WNT → β-catenin → c-MYC signaling. These data have implications for understanding how genetic abnormalities cooperate to initiate and promote lung carcinogenesis.