Cargando…
Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of G2 cycle retention effect
Ligands were anchored onto nanoparticles (NPs) to improve the cell internalization and tumor localization of chemotherapeutics. However, the clinical application was shadowed by the complex preparation procedure and the immunogenicity and poor selectivity and stability of ligands. In this study, a n...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967147/ https://www.ncbi.nlm.nih.gov/pubmed/24670376 http://dx.doi.org/10.1038/srep04492 |
_version_ | 1782308988737552384 |
---|---|
author | Gao, Huile Hu, Guanlian Zhang, Qianyu Zhang, Shuang Jiang, Xinguo He, Qin |
author_facet | Gao, Huile Hu, Guanlian Zhang, Qianyu Zhang, Shuang Jiang, Xinguo He, Qin |
author_sort | Gao, Huile |
collection | PubMed |
description | Ligands were anchored onto nanoparticles (NPs) to improve the cell internalization and tumor localization of chemotherapeutics. However, the clinical application was shadowed by the complex preparation procedure and the immunogenicity and poor selectivity and stability of ligands. In this study, a novel strategy was developed to elevate the tumor cellular uptake and tumor localization of NPs utilizing the G2/M phase retention effect of docetaxel, one of the most common chemotherapeutics. Results showed pretreatment with docetaxel could effectively arrest cells in G2/M phase, leading to an enhanced cell uptake of NPs, which may be caused by the facilitated endocytosis of NPs. In vivo imaging and slice distribution also demonstrated the pretreatment with docetaxel improved the localization of NPs in tumor. This strategy can be easily transferred to clinical for cancer management. Combination chemotherapeutics injections with commercial nano-drugs may result in better antitumor effect than the administration of a single drug. |
format | Online Article Text |
id | pubmed-3967147 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-39671472014-03-27 Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of G2 cycle retention effect Gao, Huile Hu, Guanlian Zhang, Qianyu Zhang, Shuang Jiang, Xinguo He, Qin Sci Rep Article Ligands were anchored onto nanoparticles (NPs) to improve the cell internalization and tumor localization of chemotherapeutics. However, the clinical application was shadowed by the complex preparation procedure and the immunogenicity and poor selectivity and stability of ligands. In this study, a novel strategy was developed to elevate the tumor cellular uptake and tumor localization of NPs utilizing the G2/M phase retention effect of docetaxel, one of the most common chemotherapeutics. Results showed pretreatment with docetaxel could effectively arrest cells in G2/M phase, leading to an enhanced cell uptake of NPs, which may be caused by the facilitated endocytosis of NPs. In vivo imaging and slice distribution also demonstrated the pretreatment with docetaxel improved the localization of NPs in tumor. This strategy can be easily transferred to clinical for cancer management. Combination chemotherapeutics injections with commercial nano-drugs may result in better antitumor effect than the administration of a single drug. Nature Publishing Group 2014-03-27 /pmc/articles/PMC3967147/ /pubmed/24670376 http://dx.doi.org/10.1038/srep04492 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Gao, Huile Hu, Guanlian Zhang, Qianyu Zhang, Shuang Jiang, Xinguo He, Qin Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of G2 cycle retention effect |
title | Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of G2 cycle retention effect |
title_full | Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of G2 cycle retention effect |
title_fullStr | Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of G2 cycle retention effect |
title_full_unstemmed | Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of G2 cycle retention effect |
title_short | Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of G2 cycle retention effect |
title_sort | pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of g2 cycle retention effect |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967147/ https://www.ncbi.nlm.nih.gov/pubmed/24670376 http://dx.doi.org/10.1038/srep04492 |
work_keys_str_mv | AT gaohuile pretreatmentwithchemotherapeuticsforenhancednanoparticlesaccumulationintumorthepotentialroleofg2cycleretentioneffect AT huguanlian pretreatmentwithchemotherapeuticsforenhancednanoparticlesaccumulationintumorthepotentialroleofg2cycleretentioneffect AT zhangqianyu pretreatmentwithchemotherapeuticsforenhancednanoparticlesaccumulationintumorthepotentialroleofg2cycleretentioneffect AT zhangshuang pretreatmentwithchemotherapeuticsforenhancednanoparticlesaccumulationintumorthepotentialroleofg2cycleretentioneffect AT jiangxinguo pretreatmentwithchemotherapeuticsforenhancednanoparticlesaccumulationintumorthepotentialroleofg2cycleretentioneffect AT heqin pretreatmentwithchemotherapeuticsforenhancednanoparticlesaccumulationintumorthepotentialroleofg2cycleretentioneffect |