Cargando…
Discriminant Analysis Between Myocardial Infarction Patients and Healthy Subjects Using Wavelet Transformed Signal Averaged Electrocardiogram and Probabilistic Neural Network
There are a variety of electrocardiogram based methods to detect myocardial infarction (MI) patients. This study used the signal averaged electrocardiogram (SAECG) and its wavelet coefficient as an index to detect MI. Orthogonal leads signals from 50 acute myocardial infarction (AMI) and 50 healthy...
Autores principales: | Keshtkar, Ahmad, Seyedarabi, Hadi, Sheikhzadeh, Peyman, Rasta, Seyed Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967425/ https://www.ncbi.nlm.nih.gov/pubmed/24696156 |
Ejemplares similares
-
A Comparative Study on Preprocessing Techniques in Diabetic Retinopathy Retinal Images: Illumination Correction and Contrast Enhancement
por: Rasta, Seyed Hossein, et al.
Publicado: (2015) -
R Peak Detection in Electrocardiogram Signal Based on an Optimal Combination of Wavelet Transform, Hilbert Transform, and Adaptive Thresholding
por: Rabbani, Hossein, et al.
Publicado: (2011) -
Comparing different wavelet transforms on removing electrocardiogram baseline wanders and special trends
por: Chen, Chao-Chen, et al.
Publicado: (2020) -
Robust R-peak detection in an electrocardiogram with stationary wavelet transformation and separable convolution
por: Yun, Donghwan, et al.
Publicado: (2022) -
Future Trend Forecast by Empirical Wavelet Transform and Autoregressive Moving Average
por: Wang, Qiusheng, et al.
Publicado: (2018)