Cargando…
A Novel Unsupervised Approach for Minimally-invasive Video Segmentation
Temporal segmentation of laparoscopic video is the first step toward identifying anomalies and interrupts, recognizing actions, annotating video and assessing the surgeons' learning curve. In this paper, a novel approach for temporal segmentation of minimally-invasive videos (MIVS) is proposed....
Autores principales: | Khatibi, Toktam, Sepehri, Mohammad Mehdi, Shadpour, Pejman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967456/ https://www.ncbi.nlm.nih.gov/pubmed/24695410 |
Ejemplares similares
-
Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method
por: Taherkhani, Nasrin, et al.
Publicado: (2019) -
Proposing a machine-learning based method to predict stillbirth before and during delivery and ranking the features: nationwide retrospective cross-sectional study
por: Khatibi, Toktam, et al.
Publicado: (2021) -
Proposing Novel Data Analytics Method for Anatomical Landmark Identification from Endoscopic Video Frames
por: Ayyoubi Nezhad, Shima, et al.
Publicado: (2022) -
The feasibility and benefit of unsupervised at-home training of minimally invasive surgical skills
por: Joosten, Maja, et al.
Publicado: (2022) -
A Hybrid Unsupervised Approach for Retinal Vessel Segmentation
por: Khan, Khan Bahadar, et al.
Publicado: (2020)