Cargando…
PSSP-RFE: Accurate Prediction of Protein Structural Class by Recursive Feature Extraction from PSI-BLAST Profile, Physical-Chemical Property and Functional Annotations
Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction beco...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968047/ https://www.ncbi.nlm.nih.gov/pubmed/24675610 http://dx.doi.org/10.1371/journal.pone.0092863 |
_version_ | 1782309104466788352 |
---|---|
author | Li, Liqi Cui, Xiang Yu, Sanjiu Zhang, Yuan Luo, Zhong Yang, Hua Zhou, Yue Zheng, Xiaoqi |
author_facet | Li, Liqi Cui, Xiang Yu, Sanjiu Zhang, Yuan Luo, Zhong Yang, Hua Zhou, Yue Zheng, Xiaoqi |
author_sort | Li, Liqi |
collection | PubMed |
description | Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets. |
format | Online Article Text |
id | pubmed-3968047 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39680472014-04-01 PSSP-RFE: Accurate Prediction of Protein Structural Class by Recursive Feature Extraction from PSI-BLAST Profile, Physical-Chemical Property and Functional Annotations Li, Liqi Cui, Xiang Yu, Sanjiu Zhang, Yuan Luo, Zhong Yang, Hua Zhou, Yue Zheng, Xiaoqi PLoS One Research Article Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM) in conjunction with integrated features from position-specific score matrix (PSSM), PROFEAT and Gene Ontology (GO). A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets. Public Library of Science 2014-03-27 /pmc/articles/PMC3968047/ /pubmed/24675610 http://dx.doi.org/10.1371/journal.pone.0092863 Text en © 2014 Li et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Li, Liqi Cui, Xiang Yu, Sanjiu Zhang, Yuan Luo, Zhong Yang, Hua Zhou, Yue Zheng, Xiaoqi PSSP-RFE: Accurate Prediction of Protein Structural Class by Recursive Feature Extraction from PSI-BLAST Profile, Physical-Chemical Property and Functional Annotations |
title | PSSP-RFE: Accurate Prediction of Protein Structural Class by Recursive Feature Extraction from PSI-BLAST Profile, Physical-Chemical Property and Functional Annotations |
title_full | PSSP-RFE: Accurate Prediction of Protein Structural Class by Recursive Feature Extraction from PSI-BLAST Profile, Physical-Chemical Property and Functional Annotations |
title_fullStr | PSSP-RFE: Accurate Prediction of Protein Structural Class by Recursive Feature Extraction from PSI-BLAST Profile, Physical-Chemical Property and Functional Annotations |
title_full_unstemmed | PSSP-RFE: Accurate Prediction of Protein Structural Class by Recursive Feature Extraction from PSI-BLAST Profile, Physical-Chemical Property and Functional Annotations |
title_short | PSSP-RFE: Accurate Prediction of Protein Structural Class by Recursive Feature Extraction from PSI-BLAST Profile, Physical-Chemical Property and Functional Annotations |
title_sort | pssp-rfe: accurate prediction of protein structural class by recursive feature extraction from psi-blast profile, physical-chemical property and functional annotations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968047/ https://www.ncbi.nlm.nih.gov/pubmed/24675610 http://dx.doi.org/10.1371/journal.pone.0092863 |
work_keys_str_mv | AT liliqi pssprfeaccuratepredictionofproteinstructuralclassbyrecursivefeatureextractionfrompsiblastprofilephysicalchemicalpropertyandfunctionalannotations AT cuixiang pssprfeaccuratepredictionofproteinstructuralclassbyrecursivefeatureextractionfrompsiblastprofilephysicalchemicalpropertyandfunctionalannotations AT yusanjiu pssprfeaccuratepredictionofproteinstructuralclassbyrecursivefeatureextractionfrompsiblastprofilephysicalchemicalpropertyandfunctionalannotations AT zhangyuan pssprfeaccuratepredictionofproteinstructuralclassbyrecursivefeatureextractionfrompsiblastprofilephysicalchemicalpropertyandfunctionalannotations AT luozhong pssprfeaccuratepredictionofproteinstructuralclassbyrecursivefeatureextractionfrompsiblastprofilephysicalchemicalpropertyandfunctionalannotations AT yanghua pssprfeaccuratepredictionofproteinstructuralclassbyrecursivefeatureextractionfrompsiblastprofilephysicalchemicalpropertyandfunctionalannotations AT zhouyue pssprfeaccuratepredictionofproteinstructuralclassbyrecursivefeatureextractionfrompsiblastprofilephysicalchemicalpropertyandfunctionalannotations AT zhengxiaoqi pssprfeaccuratepredictionofproteinstructuralclassbyrecursivefeatureextractionfrompsiblastprofilephysicalchemicalpropertyandfunctionalannotations |