Cargando…
Rare Variants Detection with Kernel Machine Learning Based on Likelihood Ratio Test
This paper mainly utilizes likelihood-based tests to detect rare variants associated with a continuous phenotype under the framework of kernel machine learning. Both the likelihood ratio test (LRT) and the restricted likelihood ratio test (ReLRT) are investigated. The relationship between the kernel...
Autores principales: | Zeng, Ping, Zhao, Yang, Zhang, Liwei, Huang, Shuiping, Chen, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968153/ https://www.ncbi.nlm.nih.gov/pubmed/24675868 http://dx.doi.org/10.1371/journal.pone.0093355 |
Ejemplares similares
-
Bootstrap Restricted Likelihood Ratio Test for the Detection of Rare Variants
por: Zeng, Ping, et al.
Publicado: (2015) -
Latent likelihood ratio tests for assessing spatial kernels in epidemic models
por: Thong, David, et al.
Publicado: (2020) -
Learning the kernel for rare variant genetic association test
por: Falk, Isak, et al.
Publicado: (2023) -
Association Studies with Imputed Variants Using Expectation-Maximization Likelihood-Ratio Tests
por: Huang, Kuan-Chieh, et al.
Publicado: (2014) -
The Geometry of Generalized Likelihood Ratio Test
por: Cheng, Yongqiang, et al.
Publicado: (2022)