Cargando…
Genome expression profile analysis of the maize sheath in response to inoculation to R. solani
Currently, the molecular regulation mechanisms of disease-resistant involved in maize leaf sheaths infected by banded leaf and sheath blight (BLSB) are poorly known. To gain insight into the transcriptome dynamics that are associated with their disease-resistant, genome-wide gene expression profilin...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968446/ https://www.ncbi.nlm.nih.gov/pubmed/24420865 http://dx.doi.org/10.1007/s11033-014-3103-z |
_version_ | 1782309157930532864 |
---|---|
author | Gao, Jian Chen, Zhe Luo, Mao Peng, Hua Lin, Haijian Qin, Cheng Yuan, Guangsheng Shen, Yaou Ding, Haiping Zhao, Maojun Pan, Guangtang Zhang, Zhiming |
author_facet | Gao, Jian Chen, Zhe Luo, Mao Peng, Hua Lin, Haijian Qin, Cheng Yuan, Guangsheng Shen, Yaou Ding, Haiping Zhao, Maojun Pan, Guangtang Zhang, Zhiming |
author_sort | Gao, Jian |
collection | PubMed |
description | Currently, the molecular regulation mechanisms of disease-resistant involved in maize leaf sheaths infected by banded leaf and sheath blight (BLSB) are poorly known. To gain insight into the transcriptome dynamics that are associated with their disease-resistant, genome-wide gene expression profiling was conducted by Solexa sequencing. More than four million tags were generated from sheath tissues without any leaf or development leaf, including 193,222 and 204,824 clean tags in the two libraries, respectively. Of these, 82,864 (55.4 %) and 91,678 (51.5 %) tags were matched to the reference genes. The most differentially expressed tags with log2 ratio >2 or <−2 (P < 0.001) were further analyzed, representing 1,476 up-regulated and 1,754 down-regulated genes, except for unknown transcripts, which were classified into 11 functional categories. The most enriched categories were those of metabolism, signal transduction and cellular transport. Next, the expression patterns of 12 genes were assessed by quantitative real-time PCR, and it is showed the results were general agreement with the Solexa analysis, although the degree of change was lower in amplitude. In conclusion, we first reveal the complex changes in the transcriptome during the early development of maize sheath infected by BLSB and provide a comprehensive set of data that are essential for understanding its molecular regulation mechanism. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11033-014-3103-z) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-3968446 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-39684462014-03-28 Genome expression profile analysis of the maize sheath in response to inoculation to R. solani Gao, Jian Chen, Zhe Luo, Mao Peng, Hua Lin, Haijian Qin, Cheng Yuan, Guangsheng Shen, Yaou Ding, Haiping Zhao, Maojun Pan, Guangtang Zhang, Zhiming Mol Biol Rep Article Currently, the molecular regulation mechanisms of disease-resistant involved in maize leaf sheaths infected by banded leaf and sheath blight (BLSB) are poorly known. To gain insight into the transcriptome dynamics that are associated with their disease-resistant, genome-wide gene expression profiling was conducted by Solexa sequencing. More than four million tags were generated from sheath tissues without any leaf or development leaf, including 193,222 and 204,824 clean tags in the two libraries, respectively. Of these, 82,864 (55.4 %) and 91,678 (51.5 %) tags were matched to the reference genes. The most differentially expressed tags with log2 ratio >2 or <−2 (P < 0.001) were further analyzed, representing 1,476 up-regulated and 1,754 down-regulated genes, except for unknown transcripts, which were classified into 11 functional categories. The most enriched categories were those of metabolism, signal transduction and cellular transport. Next, the expression patterns of 12 genes were assessed by quantitative real-time PCR, and it is showed the results were general agreement with the Solexa analysis, although the degree of change was lower in amplitude. In conclusion, we first reveal the complex changes in the transcriptome during the early development of maize sheath infected by BLSB and provide a comprehensive set of data that are essential for understanding its molecular regulation mechanism. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11033-014-3103-z) contains supplementary material, which is available to authorized users. Springer Netherlands 2014-01-14 2014 /pmc/articles/PMC3968446/ /pubmed/24420865 http://dx.doi.org/10.1007/s11033-014-3103-z Text en © The Author(s) 2014 https://creativecommons.org/licenses/by/2.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Article Gao, Jian Chen, Zhe Luo, Mao Peng, Hua Lin, Haijian Qin, Cheng Yuan, Guangsheng Shen, Yaou Ding, Haiping Zhao, Maojun Pan, Guangtang Zhang, Zhiming Genome expression profile analysis of the maize sheath in response to inoculation to R. solani |
title | Genome expression profile analysis of the maize sheath in response to inoculation to R. solani |
title_full | Genome expression profile analysis of the maize sheath in response to inoculation to R. solani |
title_fullStr | Genome expression profile analysis of the maize sheath in response to inoculation to R. solani |
title_full_unstemmed | Genome expression profile analysis of the maize sheath in response to inoculation to R. solani |
title_short | Genome expression profile analysis of the maize sheath in response to inoculation to R. solani |
title_sort | genome expression profile analysis of the maize sheath in response to inoculation to r. solani |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968446/ https://www.ncbi.nlm.nih.gov/pubmed/24420865 http://dx.doi.org/10.1007/s11033-014-3103-z |
work_keys_str_mv | AT gaojian genomeexpressionprofileanalysisofthemaizesheathinresponsetoinoculationtorsolani AT chenzhe genomeexpressionprofileanalysisofthemaizesheathinresponsetoinoculationtorsolani AT luomao genomeexpressionprofileanalysisofthemaizesheathinresponsetoinoculationtorsolani AT penghua genomeexpressionprofileanalysisofthemaizesheathinresponsetoinoculationtorsolani AT linhaijian genomeexpressionprofileanalysisofthemaizesheathinresponsetoinoculationtorsolani AT qincheng genomeexpressionprofileanalysisofthemaizesheathinresponsetoinoculationtorsolani AT yuanguangsheng genomeexpressionprofileanalysisofthemaizesheathinresponsetoinoculationtorsolani AT shenyaou genomeexpressionprofileanalysisofthemaizesheathinresponsetoinoculationtorsolani AT dinghaiping genomeexpressionprofileanalysisofthemaizesheathinresponsetoinoculationtorsolani AT zhaomaojun genomeexpressionprofileanalysisofthemaizesheathinresponsetoinoculationtorsolani AT panguangtang genomeexpressionprofileanalysisofthemaizesheathinresponsetoinoculationtorsolani AT zhangzhiming genomeexpressionprofileanalysisofthemaizesheathinresponsetoinoculationtorsolani |