Cargando…
A brain basis for musical hallucinations()
The physiological basis for musical hallucinations (MH) is not understood. One obstacle to understanding has been the lack of a method to manipulate the intensity of hallucination during the course of experiment. Residual inhibition, transient suppression of a phantom percept after the offset of a m...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Masson
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969291/ https://www.ncbi.nlm.nih.gov/pubmed/24445167 http://dx.doi.org/10.1016/j.cortex.2013.12.002 |
_version_ | 1782309248115408896 |
---|---|
author | Kumar, Sukhbinder Sedley, William Barnes, Gareth R. Teki, Sundeep Friston, Karl J. Griffiths, Timothy D. |
author_facet | Kumar, Sukhbinder Sedley, William Barnes, Gareth R. Teki, Sundeep Friston, Karl J. Griffiths, Timothy D. |
author_sort | Kumar, Sukhbinder |
collection | PubMed |
description | The physiological basis for musical hallucinations (MH) is not understood. One obstacle to understanding has been the lack of a method to manipulate the intensity of hallucination during the course of experiment. Residual inhibition, transient suppression of a phantom percept after the offset of a masking stimulus, has been used in the study of tinnitus. We report here a human subject whose MH were residually inhibited by short periods of music. Magnetoencephalography (MEG) allowed us to examine variation in the underlying oscillatory brain activity in different states. Source-space analysis capable of single-subject inference defined left-lateralised power increases, associated with stronger hallucinations, in the gamma band in left anterior superior temporal gyrus, and in the beta band in motor cortex and posteromedial cortex. The data indicate that these areas form a crucial network in the generation of MH, and are consistent with a model in which MH are generated by persistent reciprocal communication in a predictive coding hierarchy. |
format | Online Article Text |
id | pubmed-3969291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Masson |
record_format | MEDLINE/PubMed |
spelling | pubmed-39692912014-03-31 A brain basis for musical hallucinations() Kumar, Sukhbinder Sedley, William Barnes, Gareth R. Teki, Sundeep Friston, Karl J. Griffiths, Timothy D. Cortex Research Report The physiological basis for musical hallucinations (MH) is not understood. One obstacle to understanding has been the lack of a method to manipulate the intensity of hallucination during the course of experiment. Residual inhibition, transient suppression of a phantom percept after the offset of a masking stimulus, has been used in the study of tinnitus. We report here a human subject whose MH were residually inhibited by short periods of music. Magnetoencephalography (MEG) allowed us to examine variation in the underlying oscillatory brain activity in different states. Source-space analysis capable of single-subject inference defined left-lateralised power increases, associated with stronger hallucinations, in the gamma band in left anterior superior temporal gyrus, and in the beta band in motor cortex and posteromedial cortex. The data indicate that these areas form a crucial network in the generation of MH, and are consistent with a model in which MH are generated by persistent reciprocal communication in a predictive coding hierarchy. Masson 2014-03 /pmc/articles/PMC3969291/ /pubmed/24445167 http://dx.doi.org/10.1016/j.cortex.2013.12.002 Text en © 2013 The Authors http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Report Kumar, Sukhbinder Sedley, William Barnes, Gareth R. Teki, Sundeep Friston, Karl J. Griffiths, Timothy D. A brain basis for musical hallucinations() |
title | A brain basis for musical hallucinations() |
title_full | A brain basis for musical hallucinations() |
title_fullStr | A brain basis for musical hallucinations() |
title_full_unstemmed | A brain basis for musical hallucinations() |
title_short | A brain basis for musical hallucinations() |
title_sort | brain basis for musical hallucinations() |
topic | Research Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969291/ https://www.ncbi.nlm.nih.gov/pubmed/24445167 http://dx.doi.org/10.1016/j.cortex.2013.12.002 |
work_keys_str_mv | AT kumarsukhbinder abrainbasisformusicalhallucinations AT sedleywilliam abrainbasisformusicalhallucinations AT barnesgarethr abrainbasisformusicalhallucinations AT tekisundeep abrainbasisformusicalhallucinations AT fristonkarlj abrainbasisformusicalhallucinations AT griffithstimothyd abrainbasisformusicalhallucinations AT kumarsukhbinder brainbasisformusicalhallucinations AT sedleywilliam brainbasisformusicalhallucinations AT barnesgarethr brainbasisformusicalhallucinations AT tekisundeep brainbasisformusicalhallucinations AT fristonkarlj brainbasisformusicalhallucinations AT griffithstimothyd brainbasisformusicalhallucinations |