Cargando…
Mouse Models for the Evaluation of Osteocyte Functions
Osteocytes establish an extensive intracellular and extracellular communication system via gap junction-coupled cell processes and canaliculi, through which cell processes pass throughout bone, and the communication system is extended to osteoblasts on the bone surface. To examine the osteocyte func...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society for Bone and Mineral Research
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970300/ https://www.ncbi.nlm.nih.gov/pubmed/24707467 http://dx.doi.org/10.11005/jbm.2014.21.1.55 |
_version_ | 1782309365010661376 |
---|---|
author | Komori, Toshihisa |
author_facet | Komori, Toshihisa |
author_sort | Komori, Toshihisa |
collection | PubMed |
description | Osteocytes establish an extensive intracellular and extracellular communication system via gap junction-coupled cell processes and canaliculi, through which cell processes pass throughout bone, and the communication system is extended to osteoblasts on the bone surface. To examine the osteocyte function, several mouse models were established. To ablate osteocytes, osteocytes death was induced by diphtheria toxin. However, any types of osteocyte death result in necrosis, because dying osteocytes are not phagocytosed by scavengers. After the rupture of cytoplasmic membrane, immunostimulatory molecules are released from lacunae to bone surface through canaliculi, and stimulate macrophages. The stimulated macrophages produce interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α), which are the most important proinflammatory cytokines triggering inflammatory bone loss. Therefore, the osteocyte ablation results in necrosis-induced severe osteoporosis. In conditional knockout mice of gap junction protein alpha-1 (GJA1), which encodes connexin 43 in Gap junction, using dentin matrix protein 1 (DMP1) Cre transgenic mice, osteocyte apoptosis and enhanced bone resorption occur, because extracellular communication is intact. Overexpression of Bcl-2 in osteoblasts using 2.3 kb collagen type I alpha1 (COL1A1) promoter causes osteocyte apoptosis due to the severe reduction in the number of osteocyte processes, resulting in the disruption of both intracellular and extracellular communication systems. This mouse model unraveled osteocyte functions. Osteocytes negatively regulate bone mass by stimulating osteoclastogenesis and inhibiting osteoblast function in physiological condition. Osteocytes are responsible for bone loss in unloaded condition, and osteocytes augment their functions by further stimulating osteoclastogenesis and further inhibiting osteoblast function, at least partly, through the upregulation of receptor activator of nuclear factor-kappa B ligand (RANKL) in osteoblasts and Sost in osteocytes in unloaded condition. |
format | Online Article Text |
id | pubmed-3970300 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | The Korean Society for Bone and Mineral Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-39703002014-04-04 Mouse Models for the Evaluation of Osteocyte Functions Komori, Toshihisa J Bone Metab Review Article Osteocytes establish an extensive intracellular and extracellular communication system via gap junction-coupled cell processes and canaliculi, through which cell processes pass throughout bone, and the communication system is extended to osteoblasts on the bone surface. To examine the osteocyte function, several mouse models were established. To ablate osteocytes, osteocytes death was induced by diphtheria toxin. However, any types of osteocyte death result in necrosis, because dying osteocytes are not phagocytosed by scavengers. After the rupture of cytoplasmic membrane, immunostimulatory molecules are released from lacunae to bone surface through canaliculi, and stimulate macrophages. The stimulated macrophages produce interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α), which are the most important proinflammatory cytokines triggering inflammatory bone loss. Therefore, the osteocyte ablation results in necrosis-induced severe osteoporosis. In conditional knockout mice of gap junction protein alpha-1 (GJA1), which encodes connexin 43 in Gap junction, using dentin matrix protein 1 (DMP1) Cre transgenic mice, osteocyte apoptosis and enhanced bone resorption occur, because extracellular communication is intact. Overexpression of Bcl-2 in osteoblasts using 2.3 kb collagen type I alpha1 (COL1A1) promoter causes osteocyte apoptosis due to the severe reduction in the number of osteocyte processes, resulting in the disruption of both intracellular and extracellular communication systems. This mouse model unraveled osteocyte functions. Osteocytes negatively regulate bone mass by stimulating osteoclastogenesis and inhibiting osteoblast function in physiological condition. Osteocytes are responsible for bone loss in unloaded condition, and osteocytes augment their functions by further stimulating osteoclastogenesis and further inhibiting osteoblast function, at least partly, through the upregulation of receptor activator of nuclear factor-kappa B ligand (RANKL) in osteoblasts and Sost in osteocytes in unloaded condition. The Korean Society for Bone and Mineral Research 2014-02 2014-02-28 /pmc/articles/PMC3970300/ /pubmed/24707467 http://dx.doi.org/10.11005/jbm.2014.21.1.55 Text en Copyright © 2014 The Korean Society for Bone and Mineral Research http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Komori, Toshihisa Mouse Models for the Evaluation of Osteocyte Functions |
title | Mouse Models for the Evaluation of Osteocyte Functions |
title_full | Mouse Models for the Evaluation of Osteocyte Functions |
title_fullStr | Mouse Models for the Evaluation of Osteocyte Functions |
title_full_unstemmed | Mouse Models for the Evaluation of Osteocyte Functions |
title_short | Mouse Models for the Evaluation of Osteocyte Functions |
title_sort | mouse models for the evaluation of osteocyte functions |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970300/ https://www.ncbi.nlm.nih.gov/pubmed/24707467 http://dx.doi.org/10.11005/jbm.2014.21.1.55 |
work_keys_str_mv | AT komoritoshihisa mousemodelsfortheevaluationofosteocytefunctions |