Cargando…
Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats
Estrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neuro...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Periodicals, Inc.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970743/ https://www.ncbi.nlm.nih.gov/pubmed/24744863 http://dx.doi.org/10.1002/phy2.185 |
_version_ | 1782309422879473664 |
---|---|
author | Pettorossi, Vito Enrico Di Mauro, Michela Scarduzio, Mariangela Panichi, Roberto Tozzi, Alessandro Calabresi, Paolo Grassi, Silvarosa |
author_facet | Pettorossi, Vito Enrico Di Mauro, Michela Scarduzio, Mariangela Panichi, Roberto Tozzi, Alessandro Calabresi, Paolo Grassi, Silvarosa |
author_sort | Pettorossi, Vito Enrico |
collection | PubMed |
description | Estrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neurosteroids on synaptic plasticity in the CA1 hippocampal region, by blocking ARs or ERs during induction of long‐term depression (LTD) and depotentiation (DP) by low‐frequency stimulation (LFS) and long‐term potentiation (LTP) by high‐frequency stimulation (HFS). We found that LTD and DP depend on ARs, while LTP on ERs in both age groups. Accordingly, the AR blocker flutamide affected induction of LTD reverting it into LTP, and prevented DP, while having no effect on HFS‐dependent LTP. Conversely, ER blockade with ICI 182,780 (ICI) markedly reduced LTP, but did not influence LTD and DP. However, the receptor blockade did not affect the maintenance of either LTD or LTP. Moreover, we found that similar to LTP and LTD induced in control condition, the LTP unveiled by flutamide during LFS and residual LTP induced by HFS under ICI depended on N‐methyl‐d aspartate receptor (NMDAR) activation. Furthermore, as the synaptic paired‐pulse facilitation (PPF) was not affected by either AR or ER blockade, we suggest that sex neurosteroids act primarily at a postsynaptic level. This study demonstrates for the first time the crucial role of estrogenic and androgenic neurosteroids in determining the sign of hippocampal synaptic plasticity in male rat and the activity‐dependent recruitment of androgenic and estrogenic pathways leading to LTD and LTP, respectively. |
format | Online Article Text |
id | pubmed-3970743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Wiley Periodicals, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-39707432014-03-31 Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats Pettorossi, Vito Enrico Di Mauro, Michela Scarduzio, Mariangela Panichi, Roberto Tozzi, Alessandro Calabresi, Paolo Grassi, Silvarosa Physiol Rep Original Research Estrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neurosteroids on synaptic plasticity in the CA1 hippocampal region, by blocking ARs or ERs during induction of long‐term depression (LTD) and depotentiation (DP) by low‐frequency stimulation (LFS) and long‐term potentiation (LTP) by high‐frequency stimulation (HFS). We found that LTD and DP depend on ARs, while LTP on ERs in both age groups. Accordingly, the AR blocker flutamide affected induction of LTD reverting it into LTP, and prevented DP, while having no effect on HFS‐dependent LTP. Conversely, ER blockade with ICI 182,780 (ICI) markedly reduced LTP, but did not influence LTD and DP. However, the receptor blockade did not affect the maintenance of either LTD or LTP. Moreover, we found that similar to LTP and LTD induced in control condition, the LTP unveiled by flutamide during LFS and residual LTP induced by HFS under ICI depended on N‐methyl‐d aspartate receptor (NMDAR) activation. Furthermore, as the synaptic paired‐pulse facilitation (PPF) was not affected by either AR or ER blockade, we suggest that sex neurosteroids act primarily at a postsynaptic level. This study demonstrates for the first time the crucial role of estrogenic and androgenic neurosteroids in determining the sign of hippocampal synaptic plasticity in male rat and the activity‐dependent recruitment of androgenic and estrogenic pathways leading to LTD and LTP, respectively. Wiley Periodicals, Inc. 2013-12-08 /pmc/articles/PMC3970743/ /pubmed/24744863 http://dx.doi.org/10.1002/phy2.185 Text en © 2013 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/3.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Pettorossi, Vito Enrico Di Mauro, Michela Scarduzio, Mariangela Panichi, Roberto Tozzi, Alessandro Calabresi, Paolo Grassi, Silvarosa Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats |
title | Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats |
title_full | Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats |
title_fullStr | Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats |
title_full_unstemmed | Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats |
title_short | Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats |
title_sort | modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the ca1 hippocampal region of male rats |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970743/ https://www.ncbi.nlm.nih.gov/pubmed/24744863 http://dx.doi.org/10.1002/phy2.185 |
work_keys_str_mv | AT pettorossivitoenrico modulatoryroleofandrogenicandestrogenicneurosteroidsindeterminingthedirectionofsynapticplasticityintheca1hippocampalregionofmalerats AT dimauromichela modulatoryroleofandrogenicandestrogenicneurosteroidsindeterminingthedirectionofsynapticplasticityintheca1hippocampalregionofmalerats AT scarduziomariangela modulatoryroleofandrogenicandestrogenicneurosteroidsindeterminingthedirectionofsynapticplasticityintheca1hippocampalregionofmalerats AT panichiroberto modulatoryroleofandrogenicandestrogenicneurosteroidsindeterminingthedirectionofsynapticplasticityintheca1hippocampalregionofmalerats AT tozzialessandro modulatoryroleofandrogenicandestrogenicneurosteroidsindeterminingthedirectionofsynapticplasticityintheca1hippocampalregionofmalerats AT calabresipaolo modulatoryroleofandrogenicandestrogenicneurosteroidsindeterminingthedirectionofsynapticplasticityintheca1hippocampalregionofmalerats AT grassisilvarosa modulatoryroleofandrogenicandestrogenicneurosteroidsindeterminingthedirectionofsynapticplasticityintheca1hippocampalregionofmalerats |