Cargando…
Automatic Detection and Quantification of Acute Cerebral Infarct by Fuzzy Clustering and Histographic Characterization on Diffusion Weighted MR Imaging and Apparent Diffusion Coefficient Map
Determination of the volumes of acute cerebral infarct in the magnetic resonance imaging harbors prognostic values. However, semiautomatic method of segmentation is time-consuming and with high interrater variability. Using diffusion weighted imaging and apparent diffusion coefficient map from patie...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971548/ https://www.ncbi.nlm.nih.gov/pubmed/24738080 http://dx.doi.org/10.1155/2014/963032 |
_version_ | 1782309489362337792 |
---|---|
author | Tsai, Jang-Zern Peng, Syu-Jyun Chen, Yu-Wei Wang, Kuo-Wei Wu, Hsiao-Kuang Lin, Yun-Yu Lee, Ying-Ying Chen, Chi-Jen Lin, Huey-Juan Smith, Eric Edward Yeh, Poh-Shiow Hsin, Yue-Loong |
author_facet | Tsai, Jang-Zern Peng, Syu-Jyun Chen, Yu-Wei Wang, Kuo-Wei Wu, Hsiao-Kuang Lin, Yun-Yu Lee, Ying-Ying Chen, Chi-Jen Lin, Huey-Juan Smith, Eric Edward Yeh, Poh-Shiow Hsin, Yue-Loong |
author_sort | Tsai, Jang-Zern |
collection | PubMed |
description | Determination of the volumes of acute cerebral infarct in the magnetic resonance imaging harbors prognostic values. However, semiautomatic method of segmentation is time-consuming and with high interrater variability. Using diffusion weighted imaging and apparent diffusion coefficient map from patients with acute infarction in 10 days, we aimed to develop a fully automatic algorithm to measure infarct volume. It includes an unsupervised classification with fuzzy C-means clustering determination of the histographic distribution, defining self-adjusted intensity thresholds. The proposed method attained high agreement with the semiautomatic method, with similarity index 89.9 ± 6.5%, in detecting cerebral infarct lesions from 22 acute stroke patients. We demonstrated the accuracy of the proposed computer-assisted prompt segmentation method, which appeared promising to replace the laborious, time-consuming, and operator-dependent semiautomatic segmentation. |
format | Online Article Text |
id | pubmed-3971548 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-39715482014-04-15 Automatic Detection and Quantification of Acute Cerebral Infarct by Fuzzy Clustering and Histographic Characterization on Diffusion Weighted MR Imaging and Apparent Diffusion Coefficient Map Tsai, Jang-Zern Peng, Syu-Jyun Chen, Yu-Wei Wang, Kuo-Wei Wu, Hsiao-Kuang Lin, Yun-Yu Lee, Ying-Ying Chen, Chi-Jen Lin, Huey-Juan Smith, Eric Edward Yeh, Poh-Shiow Hsin, Yue-Loong Biomed Res Int Research Article Determination of the volumes of acute cerebral infarct in the magnetic resonance imaging harbors prognostic values. However, semiautomatic method of segmentation is time-consuming and with high interrater variability. Using diffusion weighted imaging and apparent diffusion coefficient map from patients with acute infarction in 10 days, we aimed to develop a fully automatic algorithm to measure infarct volume. It includes an unsupervised classification with fuzzy C-means clustering determination of the histographic distribution, defining self-adjusted intensity thresholds. The proposed method attained high agreement with the semiautomatic method, with similarity index 89.9 ± 6.5%, in detecting cerebral infarct lesions from 22 acute stroke patients. We demonstrated the accuracy of the proposed computer-assisted prompt segmentation method, which appeared promising to replace the laborious, time-consuming, and operator-dependent semiautomatic segmentation. Hindawi Publishing Corporation 2014 2014-03-12 /pmc/articles/PMC3971548/ /pubmed/24738080 http://dx.doi.org/10.1155/2014/963032 Text en Copyright © 2014 Jang-Zern Tsai et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Tsai, Jang-Zern Peng, Syu-Jyun Chen, Yu-Wei Wang, Kuo-Wei Wu, Hsiao-Kuang Lin, Yun-Yu Lee, Ying-Ying Chen, Chi-Jen Lin, Huey-Juan Smith, Eric Edward Yeh, Poh-Shiow Hsin, Yue-Loong Automatic Detection and Quantification of Acute Cerebral Infarct by Fuzzy Clustering and Histographic Characterization on Diffusion Weighted MR Imaging and Apparent Diffusion Coefficient Map |
title | Automatic Detection and Quantification of Acute Cerebral Infarct by Fuzzy Clustering and Histographic Characterization on Diffusion Weighted MR Imaging and Apparent Diffusion Coefficient Map |
title_full | Automatic Detection and Quantification of Acute Cerebral Infarct by Fuzzy Clustering and Histographic Characterization on Diffusion Weighted MR Imaging and Apparent Diffusion Coefficient Map |
title_fullStr | Automatic Detection and Quantification of Acute Cerebral Infarct by Fuzzy Clustering and Histographic Characterization on Diffusion Weighted MR Imaging and Apparent Diffusion Coefficient Map |
title_full_unstemmed | Automatic Detection and Quantification of Acute Cerebral Infarct by Fuzzy Clustering and Histographic Characterization on Diffusion Weighted MR Imaging and Apparent Diffusion Coefficient Map |
title_short | Automatic Detection and Quantification of Acute Cerebral Infarct by Fuzzy Clustering and Histographic Characterization on Diffusion Weighted MR Imaging and Apparent Diffusion Coefficient Map |
title_sort | automatic detection and quantification of acute cerebral infarct by fuzzy clustering and histographic characterization on diffusion weighted mr imaging and apparent diffusion coefficient map |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971548/ https://www.ncbi.nlm.nih.gov/pubmed/24738080 http://dx.doi.org/10.1155/2014/963032 |
work_keys_str_mv | AT tsaijangzern automaticdetectionandquantificationofacutecerebralinfarctbyfuzzyclusteringandhistographiccharacterizationondiffusionweightedmrimagingandapparentdiffusioncoefficientmap AT pengsyujyun automaticdetectionandquantificationofacutecerebralinfarctbyfuzzyclusteringandhistographiccharacterizationondiffusionweightedmrimagingandapparentdiffusioncoefficientmap AT chenyuwei automaticdetectionandquantificationofacutecerebralinfarctbyfuzzyclusteringandhistographiccharacterizationondiffusionweightedmrimagingandapparentdiffusioncoefficientmap AT wangkuowei automaticdetectionandquantificationofacutecerebralinfarctbyfuzzyclusteringandhistographiccharacterizationondiffusionweightedmrimagingandapparentdiffusioncoefficientmap AT wuhsiaokuang automaticdetectionandquantificationofacutecerebralinfarctbyfuzzyclusteringandhistographiccharacterizationondiffusionweightedmrimagingandapparentdiffusioncoefficientmap AT linyunyu automaticdetectionandquantificationofacutecerebralinfarctbyfuzzyclusteringandhistographiccharacterizationondiffusionweightedmrimagingandapparentdiffusioncoefficientmap AT leeyingying automaticdetectionandquantificationofacutecerebralinfarctbyfuzzyclusteringandhistographiccharacterizationondiffusionweightedmrimagingandapparentdiffusioncoefficientmap AT chenchijen automaticdetectionandquantificationofacutecerebralinfarctbyfuzzyclusteringandhistographiccharacterizationondiffusionweightedmrimagingandapparentdiffusioncoefficientmap AT linhueyjuan automaticdetectionandquantificationofacutecerebralinfarctbyfuzzyclusteringandhistographiccharacterizationondiffusionweightedmrimagingandapparentdiffusioncoefficientmap AT smithericedward automaticdetectionandquantificationofacutecerebralinfarctbyfuzzyclusteringandhistographiccharacterizationondiffusionweightedmrimagingandapparentdiffusioncoefficientmap AT yehpohshiow automaticdetectionandquantificationofacutecerebralinfarctbyfuzzyclusteringandhistographiccharacterizationondiffusionweightedmrimagingandapparentdiffusioncoefficientmap AT hsinyueloong automaticdetectionandquantificationofacutecerebralinfarctbyfuzzyclusteringandhistographiccharacterizationondiffusionweightedmrimagingandapparentdiffusioncoefficientmap |