Cargando…
Bacterial community structure and functional contributions to emergence of health or necrotizing enterocolitis in preterm infants
BACKGROUND: Preterm infants represent a unique patient population that is born functionally immature and must accomplish development under the influence of a hospital environment. Neonatal necrotizing enterocolitis (NEC) is an inflammatory intestinal disorder affecting preterm infants. The purpose o...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971604/ https://www.ncbi.nlm.nih.gov/pubmed/24450928 http://dx.doi.org/10.1186/2049-2618-1-20 |
_version_ | 1782309501058154496 |
---|---|
author | Claud, Erika C Keegan, Kevin P Brulc, Jennifer M Lu, Lei Bartels, Daniela Glass, Elizabeth Chang, Eugene B Meyer, Folker Antonopoulos, Dionysios A |
author_facet | Claud, Erika C Keegan, Kevin P Brulc, Jennifer M Lu, Lei Bartels, Daniela Glass, Elizabeth Chang, Eugene B Meyer, Folker Antonopoulos, Dionysios A |
author_sort | Claud, Erika C |
collection | PubMed |
description | BACKGROUND: Preterm infants represent a unique patient population that is born functionally immature and must accomplish development under the influence of a hospital environment. Neonatal necrotizing enterocolitis (NEC) is an inflammatory intestinal disorder affecting preterm infants. The purpose of this study was to evaluate the progression of intestinal microbiota community development between preterm infants who remained healthy compared to preterm infants who developed NEC. RESULTS: Weekly fecal samples from ten preterm infants, five with NEC and five matched healthy controls were obtained. Bacterial DNA from individual fecal samples was subjected to sequencing of 16S rRNA-based inventories using the 454 GS-FLX platform. Fecal samples from control infants demonstrated a temporal pattern in their microbiota, which converged toward that of a healthy full term breast-fed infant. Microbiota development in NEC patients diverged from controls beginning three weeks prior to diagnosis. Shotgun metagenomic sequencing was performed to identify functional differences in the respective microbiota of fecal samples from a set of twins in which one twin developed NEC and one did not. The majority of the differentially abundant genes in the NEC patient were associated with carbohydrate metabolism and mapped to members of the family Enterobacteriaceae. This may indicate an adaptation of the community to an altered profile of substrate availability for specific members as a first step towards the development of NEC. We propose that the microbial communities as a whole may metabolize milk differently, resulting in differential substrate availability for specific microbial groups. Additional differentially represented gene sets of interest were related to antibiotic resistance and vitamin biosynthesis. CONCLUSIONS: Our results suggest that there is a temporal component to microbiome development in healthy preterm infants. Thus, bacteriotherapy for the treatment or prevention of NEC must consider this temporal component of the microbial community in addition to its taxonomic composition and functional content. |
format | Online Article Text |
id | pubmed-3971604 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-39716042014-04-02 Bacterial community structure and functional contributions to emergence of health or necrotizing enterocolitis in preterm infants Claud, Erika C Keegan, Kevin P Brulc, Jennifer M Lu, Lei Bartels, Daniela Glass, Elizabeth Chang, Eugene B Meyer, Folker Antonopoulos, Dionysios A Microbiome Research BACKGROUND: Preterm infants represent a unique patient population that is born functionally immature and must accomplish development under the influence of a hospital environment. Neonatal necrotizing enterocolitis (NEC) is an inflammatory intestinal disorder affecting preterm infants. The purpose of this study was to evaluate the progression of intestinal microbiota community development between preterm infants who remained healthy compared to preterm infants who developed NEC. RESULTS: Weekly fecal samples from ten preterm infants, five with NEC and five matched healthy controls were obtained. Bacterial DNA from individual fecal samples was subjected to sequencing of 16S rRNA-based inventories using the 454 GS-FLX platform. Fecal samples from control infants demonstrated a temporal pattern in their microbiota, which converged toward that of a healthy full term breast-fed infant. Microbiota development in NEC patients diverged from controls beginning three weeks prior to diagnosis. Shotgun metagenomic sequencing was performed to identify functional differences in the respective microbiota of fecal samples from a set of twins in which one twin developed NEC and one did not. The majority of the differentially abundant genes in the NEC patient were associated with carbohydrate metabolism and mapped to members of the family Enterobacteriaceae. This may indicate an adaptation of the community to an altered profile of substrate availability for specific members as a first step towards the development of NEC. We propose that the microbial communities as a whole may metabolize milk differently, resulting in differential substrate availability for specific microbial groups. Additional differentially represented gene sets of interest were related to antibiotic resistance and vitamin biosynthesis. CONCLUSIONS: Our results suggest that there is a temporal component to microbiome development in healthy preterm infants. Thus, bacteriotherapy for the treatment or prevention of NEC must consider this temporal component of the microbial community in addition to its taxonomic composition and functional content. BioMed Central 2013-07-10 /pmc/articles/PMC3971604/ /pubmed/24450928 http://dx.doi.org/10.1186/2049-2618-1-20 Text en Copyright © 2013 Claud et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Claud, Erika C Keegan, Kevin P Brulc, Jennifer M Lu, Lei Bartels, Daniela Glass, Elizabeth Chang, Eugene B Meyer, Folker Antonopoulos, Dionysios A Bacterial community structure and functional contributions to emergence of health or necrotizing enterocolitis in preterm infants |
title | Bacterial community structure and functional contributions to emergence of health or necrotizing enterocolitis in preterm infants |
title_full | Bacterial community structure and functional contributions to emergence of health or necrotizing enterocolitis in preterm infants |
title_fullStr | Bacterial community structure and functional contributions to emergence of health or necrotizing enterocolitis in preterm infants |
title_full_unstemmed | Bacterial community structure and functional contributions to emergence of health or necrotizing enterocolitis in preterm infants |
title_short | Bacterial community structure and functional contributions to emergence of health or necrotizing enterocolitis in preterm infants |
title_sort | bacterial community structure and functional contributions to emergence of health or necrotizing enterocolitis in preterm infants |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971604/ https://www.ncbi.nlm.nih.gov/pubmed/24450928 http://dx.doi.org/10.1186/2049-2618-1-20 |
work_keys_str_mv | AT clauderikac bacterialcommunitystructureandfunctionalcontributionstoemergenceofhealthornecrotizingenterocolitisinpreterminfants AT keegankevinp bacterialcommunitystructureandfunctionalcontributionstoemergenceofhealthornecrotizingenterocolitisinpreterminfants AT brulcjenniferm bacterialcommunitystructureandfunctionalcontributionstoemergenceofhealthornecrotizingenterocolitisinpreterminfants AT lulei bacterialcommunitystructureandfunctionalcontributionstoemergenceofhealthornecrotizingenterocolitisinpreterminfants AT bartelsdaniela bacterialcommunitystructureandfunctionalcontributionstoemergenceofhealthornecrotizingenterocolitisinpreterminfants AT glasselizabeth bacterialcommunitystructureandfunctionalcontributionstoemergenceofhealthornecrotizingenterocolitisinpreterminfants AT changeugeneb bacterialcommunitystructureandfunctionalcontributionstoemergenceofhealthornecrotizingenterocolitisinpreterminfants AT meyerfolker bacterialcommunitystructureandfunctionalcontributionstoemergenceofhealthornecrotizingenterocolitisinpreterminfants AT antonopoulosdionysiosa bacterialcommunitystructureandfunctionalcontributionstoemergenceofhealthornecrotizingenterocolitisinpreterminfants |