Cargando…

Novel Synthesis of Cellulose-Based Diblock Copolymer of Poly(hydroxyethyl methacrylate) by Mechanochemical Reaction

The mechanical fracture of polymer produces polymeric free radical chain-ends, by which liner block copolymers have been synthesized. A diblock copolymer of microcrystalline cellulose (MCC) and poly 2-hydroxyethyl methacrylate (pHEMA) was produced by the mechanochemical polymerization under vacuum a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ohura, Takeshi, Tsutaki, Yusaku, Sakaguchi, Masato
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972831/
https://www.ncbi.nlm.nih.gov/pubmed/24741340
http://dx.doi.org/10.1155/2014/127506
Descripción
Sumario:The mechanical fracture of polymer produces polymeric free radical chain-ends, by which liner block copolymers have been synthesized. A diblock copolymer of microcrystalline cellulose (MCC) and poly 2-hydroxyethyl methacrylate (pHEMA) was produced by the mechanochemical polymerization under vacuum and room temperature. The fraction of pHEMA in MCC-block-pHEMA produced by the mechanochemical polymerization increased up to 21 mol% with increasing fracture time (~6 h). Then, the tacticities of HEMA sequences in MCC-block-pHEMA varied according to the reaction time. In the process of mechanochemical polymerization, cellulose could play the role of a radical polymerization initiator capable of controlling stereoregularity.