Cargando…
Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks
Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a f...
Autores principales: | Talebi, Nasser, Sadrnia, Mohammad Ali, Darabi, Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972887/ https://www.ncbi.nlm.nih.gov/pubmed/24744774 http://dx.doi.org/10.1155/2014/580972 |
Ejemplares similares
-
Fault Diagnosis of Wind Turbine Based on Convolution Neural Network Algorithm
por: Xiao, Wei, et al.
Publicado: (2022) -
Robust Variable-Step Perturb-and-Observe Sliding Mode Controller for Grid-Connected Wind-Energy-Conversion Systems
por: Toumi, Ilham, et al.
Publicado: (2022) -
Winding-to-ground fault location in power transformer windings using combination of discrete wavelet transform and back-propagation neural network
por: Chiradeja, Pathomthat, et al.
Publicado: (2022) -
Structural control and fault detection of wind turbine systems
por: Karimi, Hamid Reza
Publicado: (2018) -
An SVM-Based Solution for Fault Detection in Wind Turbines
por: Santos, Pedro, et al.
Publicado: (2015)