Cargando…
The “Egg of Columbus” for Making the World's Toughest Fibres
In this letter we present the “Egg of Columbus” for making fibres with unprecedented toughness: a slider, in the simplest form just a knot, is introduced as frictional element to dissipate additional energy and thus demonstrating the existence of a previously “hidden” toughness. The proof of concept...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973575/ https://www.ncbi.nlm.nih.gov/pubmed/24695084 http://dx.doi.org/10.1371/journal.pone.0093079 |
Sumario: | In this letter we present the “Egg of Columbus” for making fibres with unprecedented toughness: a slider, in the simplest form just a knot, is introduced as frictional element to dissipate additional energy and thus demonstrating the existence of a previously “hidden” toughness. The proof of concept is experimentally realized making the world's toughest fibre, increasing the toughness modulus of a commercial Endumax macroscopic fibre from 44 J/g up to 1070 J/g (and of a zylon microfiber from 20 J/g up to 1400 J/g). The ideal upperbound toughness is expected for graphene, with a theoretical value of ∼10(5) J/g. This new concept, able of maximizing (one fold increment) the structural robustness, could explain the mysterious abundance of knot formations, in spite of their incremental energy cost and topological difficulty, in biological evolved structures, such as DNA strands and proteins. |
---|