Cargando…
Exploiting SNP Correlations within Random Forest for Genome-Wide Association Studies
The primary goal of genome-wide association studies (GWAS) is to discover variants that could lead, in isolation or in combination, to a particular trait or disease. Standard approaches to GWAS, however, are usually based on univariate hypothesis tests and therefore can account neither for correlati...
Autores principales: | Botta, Vincent, Louppe, Gilles, Geurts, Pierre, Wehenkel, Louis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973686/ https://www.ncbi.nlm.nih.gov/pubmed/24695491 http://dx.doi.org/10.1371/journal.pone.0093379 |
Ejemplares similares
-
Random Forests Based Group Importance Scores and Their Statistical Interpretation: Application for Alzheimer's Disease
por: Wehenkel, Marie, et al.
Publicado: (2018) -
Random subwindows and extremely randomized trees for image classification in cell biology
por: Marée, Raphaël, et al.
Publicado: (2007) -
Collaborative analysis of multi-gigapixel imaging data using Cytomine
por: Marée, Raphaël, et al.
Publicado: (2016) -
On the identification of potential regulatory variants within genome wide association candidate SNP sets
por: Chen, Chih-yu, et al.
Publicado: (2014) -
Genome-Wide SNP Markers Accelerate Perennial Forest Tree Breeding Rate for Disease Resistance through Marker-Assisted and Genome-Wide Selection
por: Younessi-Hamzekhanlu, Mehdi, et al.
Publicado: (2022)