Cargando…

Chemoprevention of dietary digitoflavone on colitis-associated colon tumorigenesis through inducing Nrf2 signaling pathway and inhibition of inflammation

BACKGROUND: Nuclear factor-erythroid 2-related factor 2 (Nrf2) has emerged as a novel target for the prevention of colorectal cancer (CRC). Many chemopreventive compounds associated with Nrf2 activation are effective in preclinical systems and many on-going clinical trials are showing promising find...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yang, Cai, Xueting, Yang, Jie, Sun, Xiaoyan, Hu, Chunping, Yan, Zhanpeng, Xu, Xiaojun, Lu, Wuguang, Wang, Xiaoning, Cao, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973863/
https://www.ncbi.nlm.nih.gov/pubmed/24602443
http://dx.doi.org/10.1186/1476-4598-13-48
Descripción
Sumario:BACKGROUND: Nuclear factor-erythroid 2-related factor 2 (Nrf2) has emerged as a novel target for the prevention of colorectal cancer (CRC). Many chemopreventive compounds associated with Nrf2 activation are effective in preclinical systems and many on-going clinical trials are showing promising findings. In present study we evaluated the cytoprotective effect and chemopreventive properties of dietary digitoflavone. METHOD: A cell based Antioxidant Response Element (ARE)-driven luciferase reporter system was applied to screen potential Nrf2 activators. Activation of Nrf2 by digitoflavone was confirmed through mRNA, protein and GSH level assay in Caco-2 cell line. The cytoprotective effect of digitoflavone was evaluated in H(2)O(2)-induced oxidative stress model and further signaling pathways analysis was used to determine the target of digitoflavone induced Nrf2 activation. An AOM-DSS induced colorectal cancer model was used to assess the chemopreventive effect of digitoflavone. RESULT: Micromolarity (10 μM) level of digitoflavone increased Nrf2 expressing, nuclear translocation and expression of downstream phase II antioxidant enzymes. Furthermore, digitoflavone decreased H(2)O(2)-induced oxidative stress and cell death via p38 MAPK-Nrf2/ARE pathway. In vivo study, 50 mg/kg digitoflavone significantly reduced AOM-DSS induced tumor incidence, number and size. CONCLUSION: These observations suggest that digitoflavone is a novel Nrf2 pathway activator, and protects against oxidative stress-induced cell injury. The results of the present study add further evidence of the molecular mechanisms that allow digitoflavone to exert protective effects and reaffirm its potential role as a chemopreventive agent in colorectal carcinogenesis.